Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-04T21:15:32.794Z Has data issue: false hasContentIssue false

Deposition of Ordered Arrays of Metal Sulfide Nanoparticles in Nanostructures Using Supercritical Carbon Dioxide

Published online by Cambridge University Press:  31 January 2011

Joanna Wang
Affiliation:
[email protected], University of Idaho, Chemistry, Moscow, Idaho, United States
Alexander B. Smetana
Affiliation:
[email protected], University of Idaho, Chemistry, Moscow, Idaho, United States
John J. Boeckl
Affiliation:
[email protected], WPAFB, Materials and Manufacturing Directorate, Dayton, Ohio, United States
Gail J. Brown
Affiliation:
[email protected], WPAFB, Materials and Manufacturing Directorate, Dayton, Ohio, United States
Chien M. Wai
Affiliation:
[email protected], University of Idaho, Chemistry, Moscow, Idaho, United States
Get access

Abstract

Silver sulfide (Ag2S) and cadmium sulfide (CdS) nanoparticles of adjustable sizes are synthesized using a water-in-hexane microemulsion method and stabilized by dodecanethiol. The stabilized metal sulfide nanoparticles can be deposited homogenously on flat substrates forming ordered 2D arrays in supercritical fluid carbon dioxide (Sc-CO2). The use of Sc-CO2 leaves the particles unaffected by de-wetting effects and surface tension caused by traditional solvents and produces uniform arrays. The Sc-CO2 deposition technique can effectively fill the metal sulfide nanoparticles into nanoscale features, which is difficult to achieve by conventional solvent evaporation methods.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Asher, S. A., US Patent, 4,627,689, 1986 and US Patent 4,632,517, 1986.Google Scholar
2. Xu, X., Friedman, G., Humfeld, K. D., Majetich, S. A. and Asher, S. A., Adv. Mater. 13, 1681 (2001).Google Scholar
3. Yoldas, B. E. and Partlow, D. P., Appl. Opt. 23, 1418, (1984).Google Scholar
4. Hinz, P. and Dislich, H., J. Non. Cryst. Solids 82, 411, (1986).Google Scholar
5. Hahn, R. E. and Seraphin, B. O., “Physics of Thin Films,” Academic Press, New York, (1978).Google Scholar
6. Kastner, M. A., Phys. Today 46, 24, (1993).Google Scholar
7. Motte, L., Billoudet, F. and Pileni, M. P., J. Phys. Chem. 99, 16425, (1995).Google Scholar
8. Xiao, J., Xie, Y., Tang, R. and Luo, W., J. Mater. Chem. 12, 1148, (2002).Google Scholar
9. Herron, N., Wang, Y. and Eckert, H., J. Am. Chem. Soc. 112, 1322, (1990).Google Scholar
10. Smetana, A. B., Wang, J. S., Boeckl, J. J., Brown, G. J. and Wai, C. M., J. Phys. Chem. C 112, 2294 (2008).Google Scholar
11. Liu, J., Anand, M. and Roberts, C. B., Langmuir 22, 3964, (2006).Google Scholar
12. McLeod, M. C., Kitchens, C. L. and Roberts, C.B., Langmuir 21, 2414, (2005).Google Scholar
13. Lin, X. M., Jaeger, H. M., Sorensen, C. M. and Klabunde, K. J., J. Phys. Chem. B 105, 3353, (2001).Google Scholar
14. Korgel, B. A. and Fitzmaurice, D., Phys. Rev. Lett. 80, 3531, (1998).Google Scholar
15. Ohara, P. C. and Gelbart, W. M., Langmuir 14, 3418, (1998).Google Scholar
16. Zhang, R., Liu, J., Han, B., He, J., Liu, Z. and Zhang, J., Langmuir 19(21), 8611 (2003).Google Scholar
17. Lin, X. M., Sorensen, C. M., Klabunde, K. J. and Hadjipanayis, G. C., Langmuir 14, 7140, (1998).Google Scholar
18. Smetana, A. B., Wang, J. S., Boeckl, J. J., Brown, G. J., and Wai, C. M., Langmuir 23, 10429 (2007).Google Scholar
19. Wang, J. S., Smetana, A. B., Boeckl, J. J., Brown, G. J., and Wai, C. M., Langmuir 26(2), 1117 (2010).Google Scholar
20. Nassar, N. N. and Husein, M. M., Langmuir 23, 13093, (2007).Google Scholar