Published online by Cambridge University Press: 15 February 2011
For the “Hot Wire” chemical vapor deposition technique (HWCVD) method to be applicable for photovoltaic applications, certain critical technical issues need to be addressed and resolved such as: lifetime of the filaments, reproducibility, large area demonstration of the material and stable devices. We have developed a new approach (patent applied for) which addresses some of these problems, specifically longevity of the filaments and reproducibility of the materials produced. The new filament material used has so far shown no appreciable degradation even after deposition of >200 μm of amorphous silicon (a-Si). We report that this can produce “state-ofthe-art” a-Si with a dark conductivity of <10-10 (Ohm*cm)-1 and photoconductivity of >10-5 (Ohm*cm)-1 this material can also be doped p- or n-type. We also provide data using XRD as well as the Raman spectra. These materials have been incorporated into simple Schottky barrier structures. The development of microcrystalline silicon materials is also discussed.