Published online by Cambridge University Press: 21 February 2011
Carbon coated optical fibers have recently been shown to have excellent resistance to both static fatigue and hydrogen induced losses. The deposition technique used to form the carbon coating strongly affects the coating's ability to resist these degradation mechanisms. The system developed by AT&T utilizes an atmospheric CVD chamber in which a hydrocarbon has is pyrolyzed on the fiber surface. The heat retained in the fiber from the fiber forming process is used to drive the reaction, and high draw speeds are typically used to attain the ˜900°C temperature required to deposit the hermetic form of the carbon coating. Deposition rates of ˜1μm/sec are required to produce the ˜500 Å coating.