Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-29T07:45:17.589Z Has data issue: false hasContentIssue false

Deposition of Amorphous Carbon Films from Laser-Produced Plasmas

Published online by Cambridge University Press:  21 February 2011

C. L. Marquardt
Affiliation:
Naval Research Laboratory, Washington, D. C. 20375
R. T. Williams
Affiliation:
Naval Research Laboratory, Washington, D. C. 20375
D. J. Nagel
Affiliation:
Naval Research Laboratory, Washington, D. C. 20375
Get access

Abstract

Amorphous carbon films deposited by sputtering or ion-beam techniques, as well as a-C:H films produced by glow discharge in hydrocarbon vapor, can exhibit interesting and desirable properties such as hardness, wide optical gap, high resistivity and chemical inertness. A critical parameter common to all methods for producing such films appears to be kinetic energy of the ions or atoms incident on the growing film. We report an investigation of laser-produced carbon plasmas as a deposition source which can supply ions and atoms having energies requisite for the production of hard carbon films. The plasmas were generated by focusing 1.06 μm radiation from a Q-switched Nd:YAG laser onto a carbon rod which could be rotated within the vacuum chamber to present a fresh surface for each shot. Plasma temperature, varied as a function of laser pulse energy, was monitored by recording X-UV plasma emission spectra during deposition. Films having thicknesses up to ˜0.5 μm were deposited on various substrates and were evaluated by microscopic inspection, thickness profiling, optical transmission measurements and hardness testing. Hardness increased significantly with plasma temperature, from about 3 to over 7 on the Mohs scale. There was no corresponding increase in optical gap, which remained near 0.4 eV for all films.

Type
Research Article
Copyright
Copyright © Materials Research Society 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Smith, M. and Turner, A. F., Appl. Opt. 4, 147 (1965).CrossRefGoogle Scholar
2. Schwarz, H. J., Laser Interaction and Related Plasma Phenomena, ed. Schwarz, H. J. and Hora, H. (Plenum, New York, 1971), p. 71.Google Scholar
3. Ready, J. F., Effects of High-Power Laser Radiation (Academic, New York, 1971), p. 405.Google Scholar
4. Dubowski, J. J. and Williams, D. F., Appl. Phys. Lett. 44, 339 (1984).CrossRefGoogle Scholar
5. Cheung, J. T. and Cheung, D. T., J. Vac. Sci. Technol. 21, 182 (1982).Google Scholar
6. Yang, H. T. and Cheung, J. T., J. Crystal Growth 56, 429 (1982).Google Scholar
7. Bubenzer, A., Dischler, B., Brandt, G., and Koidl, P., J. Appl.Phys. 54, 4590 (1983); Opt. Engineering 23, 153 (1984).Google Scholar
8. Myerson, B. and Smith, F. W., J. Non. Cryst. Solids, 35 & 36, 435 (1980).Google Scholar
9. Enke, K., Thin Solid Films, 80, 227 (1981).Google Scholar
10. Weissmantel, C., Bewilogua, K., Bruer, K., Dietrich, D., Ebersach, U., Erler, H. J., Brau, R., and Reisse, G.. Thin Solid Films, 96, 31 (1982).Google Scholar
11. Aisenberg, S. and Chabot, R., J. Appl. Phys. 42, 2953 (1971).Google Scholar
12. Spencer, E. G., Schmidt, P. H., Joy, D.C., and Sansalone, F. J., Appl. Phys. Letters 29, 118 (1976).Google Scholar
13. Moravec, T. J. and Orent, T. W., J. Vac. Sci. Technol. 18, 226 (1981).Google Scholar
14. Hiraki, A., Kawano, T., Kawakami, Y., Hayashi, M., and Miyasato, T., Solid State Commun. 50, 713 (1984).CrossRefGoogle Scholar
15. Banks, B. A. and Rutledge, S. K., J. Vac. Sci. Technol. 21, 807 (1982).Google Scholar
16. Bubenzer, A., Dischler, B., and Nyaiesh, A., Thin Solid Films, 91, 81 (1982).CrossRefGoogle Scholar
17. Mori, T. and Namba, Y., J. Vac. Sci. Technol. Al, 23 (1983).Google Scholar
18. Dischler, B., Bubenzer, A., and Koidl, P., Solid State Commun. 48;, 105 (1983), J. Fink, T. Muller-Heinzerling, J. Pfluger, A. Bubenzer, P. Koidl, and G. Crecelius, Solid State Commun.47, 687 (1983).Google Scholar
19. Wada, N., Gaczi, P. J., and Solin, S. A., J. Non-Cryst. Solids 35 & 36, 543 (1980).Google Scholar
20. Barbee, T. W. and Keith, D. L., in Synthesis and Properties of Metastable Phases, ed. Machlin, E. S. and Rowland, T. J., (Proceedings of the Metallurgical Society of AIME, Pittsburgh, Oct. 5–9, 1980), p. 109.Google Scholar
21. Nagel, D. J., Brown, C. M., Peckerar, M. C., Ginter, M. L., Robinson, J. A., McIlrath, T. J., and Carroll, P. K., Applied Optics 23, 1428 (1984).Google Scholar
22. O'Sullivan, C., Carroll, P. K., McIlrath, T. J. and Ginter, M. L., Appl. Opt. 20, 3043 (1981).Google Scholar
23. Mosher, D., Phys. Rev. A–10, 2330 (1974).Google Scholar
24. Gregg, D. W. and Thomas, S. J., J. Appl. Phys. 37, 4313 (1966); D. Giovanielli, D. Henderson, G. H. McCall and R. Perkins, Physics Today, Sept. 1977, pg. 19.Google Scholar
25. Ready, J. F., Appl. Phys. Lett. 3, 11 (1963).Google Scholar
26. The observed sudden jump in plasma temperature versus laser pulse energy at constant pulse width and assumed constant spot size is contrary to the expected behavior. Reasons for this are not understood at present.Google Scholar
27. Weissmantel, C., Bewilogua, K., Dietrich, D., Erler, H. J., Hinnenberg, H. J., Klose, S., Nowick, W., and Reisse, G., Thin Solid Films 72, 19 (1980).Google Scholar
28. Weissmantel, C., Schurer, C., Frohlich, F., Grau, P., and Lehmann, H., Thin Solid Films 61, L5 (1979).Google Scholar
29. Knoll, J. and Geiger, J., Phys. Rev. B29, 5651 (1984).CrossRefGoogle Scholar
30. It is worth noting that films deposited by carbon sputtering or carbon ion beams in 10−6 torr vacuum have recently been found (by Rutherford backscattering analysis) to contain 8–18 at % hydrogen. (I. L. Spain, private communication.)Google Scholar