Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-27T02:36:28.968Z Has data issue: false hasContentIssue false

Deposition and Characterization of Carbon Films Produced by Nitrogen/Argon Mixture RF Sputtering

Published online by Cambridge University Press:  26 February 2011

C. J. Tomg
Affiliation:
Department of Chemical Engineering and Material Science
T. Yeh
Affiliation:
Department of Chemical Engineering and Material Science
J. M. Sivertsen
Affiliation:
Department of Chemical Engineering and Material Science
J. H. Judy
Affiliation:
Department of Electrical Engineering University of Minnesota, Minneapolis, MN 55455
Get access

Abstract

Thin carbon films were prepared by RF diode sputtering of a graphite target in a mixed nitrogen/argon plasma. A series of carbon films were deposited as a function of nitrogen partial pressure. We have observed a systematic variation of the properties of the carbon films with an increase of the nitrogen partial pressure. AES, XPS and energy gap studies showed that nitrogen will enhance the diamond sp3 bonding. Consistent with this the optical energy gap of our C:N films shows an increase from 1.1 eV to 1.4 eV using, respectively, 25 to 100 % nitrogen plasma. The mechanical properties also are shown to be enhanced for certain applications.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Tsai, H.-C. and Bogy, D. B., J. Vac. Sci. Technol. A 5(6), 3287(1987)Google Scholar
2. Anderson, J. P., Thin Solid Films 86, 193(1981)Google Scholar
3. Moravec, T. J., Thin Solid Films 70, L9(1980)Google Scholar
4. Holland, L. and Ojaha, S. M., Thin Solid Films 38, L17(1976)Google Scholar
5. Enke, K., Thin Solid Films 80, 227(1981)Google Scholar
6. Ojaha, S. M., Norstom, H. and McCulluch, D., Thin Solid Films 60, 213(1978)Google Scholar
7. Spencer, E. G., Schmit, P. N., Joy, D. J. and Sansalone, F. J., Appl. Phys. Lett. 29, 228(1976)Google Scholar
8. Bery, S. and Anderson, L. P., Thin Solid Films 58, 117(1979)Google Scholar
9. Aisenberg, S. and Chabot, R., J. Appl. Phys. 53, 2953(1971)Google Scholar
10. Weissmantel, C., Thin Solid Films 58, 101(1979)Google Scholar
11. Whitmell, D. S. and Williamson, R., Thin Solid Films 35, 225(1976)Google Scholar
12. Savvides, N. and Window, B., J. Vac. Sci. Technol. A 3(6), 2386(1985)Google Scholar
13. Tamor, M. A., Haire, J. A.. Wu, C. H. and Hass, K. C., Appl. Phys. Lett. 54(2), 123(1989)Google Scholar
14. Tsai, H.-C. and Bogy, D. B., J. Vac. Technol. A 6(4), 2307(1988)Google Scholar
15. Nir, D., Thin Solid Films 112, 41(1984)Google Scholar
16. Cuomo, J. J., Leary, P. A., Yu, D., Reuter, W. and Frisch, M., J. Vac. Sci. Technol. 16(2), 299(1979)Google Scholar
17. Torng, C. J., Sivertsen, J. M. and Judy, J. H., in Perpendicular Magnetic Recording Preceeding, Japan, P169(1989)Google Scholar
18. Murti, D. K. and Kelly, R., Surf. Sci. 47, 282(1975)Google Scholar
19. Kim, K. S. and Winograd, N., Surf. Sci. 43, 625(1974)Google Scholar
20. Lurie, P. G. and Wilson, J. M., Surf. Sci. 65, 476(1977)Google Scholar
21. Williams, B. E. and Glass, J. T., J. Mater. Res. 4(2), 373(1989)Google Scholar
22. Moravec, T. J. and Orent, T. W., J. Vac. Sci. Technol. 18(2), 226(1981)Google Scholar
23. Mori, T. and Namba, Y., J. Appl. Phys. 55, 3276(1984)Google Scholar
24. Torng, C. J. and Sivertsen, J. M., to be publishedGoogle Scholar
25. Mott, N. F. and Davis, E. A., Electronic Processes in Non-Crystalline Material (Clarendon, Oxford, 1971), P 197Google Scholar
26. Savvides, N., J. Appl. Phys. 59(12), 4133(1986)Google Scholar