Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-30T01:15:02.849Z Has data issue: false hasContentIssue false

Dependence of the Second-order G'-band Profile on the Electronic Structure of Single-wal Nanotubes

Published online by Cambridge University Press:  15 March 2011

A. G. Souza Filho
Affiliation:
Univ. Federal do Ceará, Fortaleza, CE 60455-900, Brazil
A. Joribo
Affiliation:
Massachusetts Institute of Technology, Cambridge, MA 02139-4307
G. Dresselhaus
Affiliation:
Massachusetts Institute of Technology, Cambridge, MA 02139-4307
M. S. Dresselhaus
Affiliation:
Massachusetts Institute of Technology, Cambridge, MA 02139-4307
A. K. Swan
Affiliation:
Boston University, Boston, MA 02215
M. S. Ünlü
Affiliation:
Boston University, Boston, MA 02215
B. B. Goldberg
Affiliation:
Boston University, Boston, MA 02215
J. H. Hafner
Affiliation:
Harvard University, Cambridge, MA 02138
C. M. Lieber
Affiliation:
Harvard University, Cambridge, MA 02138
M. A. Pimenta
Affiliation:
Univ. Federa de Minas Gerais, Belo Horizonte, MG 30123-970, Brazil
R. Saito
Affiliation:
Univ. of Electro-Communications, Tokyo, 182-8585, Japan
Get access

Abstract

We analyze the dependence of the second-order G'-band profile in terms of their (n,m) indices by measuring the resonance Raman spectra of several semiconducting and metalic isolated single wal carbon nanotubes. We show that this profile is very sensitive to the electronic structure, thus making it possible to get structural (n,m) information and to probe the splitting of the van Hove singularities in the electronic density of states due to the trigona warping effect.

Type
Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Dresselhaus, M. S. and Eklund, P. C., Advances in Physics 49, 705 (2000).Google Scholar
[2] Jorio, A., Saito, R., Hafner, J. H., Lieber, C. M., Hunter, M., McClure, T., Dresselhaus, G., and Dresselhaus, M. S., Phys. Rev. Lett. 86, 1118 (2001).Google Scholar
[3] For a review on single nanotube spectroscopy see Dresselhaus, M. S., Dresselhaus, G., Jorio, A., Filho, A. G. Souza, and Saito, R., Carbon (2002), submitted.Google Scholar
[4] Baranov, A. V., Bekhterev, A. N., Bobovich, Y. S., and Petrov, V. I., Opt. Spectrosc. USSR 62, 612 (1987).Google Scholar
[5] Matthews, M. J., Pimenta, M. A., Dresselhaus, G., Dresselhaus, M. S., and Endo, M., Phys. Rev. B 59, 6585(R) (1999).Google Scholar
[6] Hafner, J. H., Cheung, C. L., Oosterkamp, T. H., and Lieber, C. M., J. Phys. Chem. B 105, 743 (2001).Google Scholar
[7] Pimenta, M. A., Hanlon, E. B., Marucci, A., Corio, P., Brown, S. D. M., Empedocles, S. A., Bawendi, M. G., Dresselhaus, G., and Dresselhaus, M. S., Brazilian J. Phys. 30, 423 (2000).Google Scholar
[8] Thomsen, C. and Reich, S., Phys. Rev. Lett. 85, 5214 (2000).Google Scholar
[9] Saito, R., Dresselhaus, G., and Dresselhaus, M. S., Phys. Rev. B 61, 2981 (2000).Google Scholar
[10] Saito, R., Dresselhaus, G., and Dresselhaus, M. S., Physical Properties of Carbon Nanotubes (Imperial College Press, London, 1998).Google Scholar
[11] Maultzsch, J., Reich, S., and Thomsen, C., Phys. Rev. B 63, 121407(R) (2001).Google Scholar
[12] Kürti, J., Zölyomi, V., Grüeneis, A., and Kuzmany, H., Phys. Rev. B (2001), submitted.Google Scholar