Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-25T15:15:25.908Z Has data issue: false hasContentIssue false

Dependence of Residual Stress of Diamond-Like Carbon Films on Precursor Gases and Process Parameters of RF PACVD

Published online by Cambridge University Press:  15 February 2011

Kwang-Ryeol Lee
Affiliation:
Ceramics Processing Lab., Korea Institute of Science and Technology, P.O.Box 131, Cheong-ryang, 130-161, Seoul, Korea
Young-Joon Baik
Affiliation:
Ceramics Processing Lab., Korea Institute of Science and Technology, P.O.Box 131, Cheong-ryang, 130-161, Seoul, Korea
Kwang Yong Eun
Affiliation:
Ceramics Processing Lab., Korea Institute of Science and Technology, P.O.Box 131, Cheong-ryang, 130-161, Seoul, Korea
Get access

Abstract

Residual compressive stress of diamond-like carbon (DLC) films was measured by beam deflection method. DLC films were deposited on thin Si wafers using r.f. plasma decomposition of methane and benzene. Negative bias voltage of the cathode was varied from -100 to -800 V and deposition pressure from 3 to 100 mTorr. When using benzene as precursor gas, the residual stress monotonically increases as increasing . (Here, Vb is the negative bias voltage of cathode and P the deposition pressure.) In case of using methane, however, the residual stress has a maximum value at between 70 and 100 V/mTorr1/2. Because of the difference in molecular size between benzene and methane, the mean free path of ions in benzene discharge is 5 times shorter than that in methane discharge. The contrasting behavior of residual stress is discussed in terms of the difference in ion energies at the specimen surface due to the difference in mean free path. On the other hand, total hydrogen concentration decreases as increasing in both cases. This result thus shows that the total hydrogen concentration cannot be a key to understand the behavior of residual stress.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Miyake, S. and Kaneko, R., Thin Solid Films, 212, 256 (1992); A. Bubenzer, B. Dischler and A. Nyaiesh, Thin Solid Films, 91, 81 (1982); P. I. Perov, V. I. Polyakov, 0. N. Ermakova, M. G. Ermakov, V. M. Eli nson and V. V. Sleptsov in Proc. 1st Int. Conf. on the Applications of Diamond Films and Related Materials, edited by Y. Tzeng, M. Yoshikawa, M. Murakawa and A. Feldman (Elsevier Science Publishing Co., Amsterdam, 1991) pp. 761-763; H. C. Tsai and D. B. Bogy, J. Vac. Sci. Technol., A 5, 3287 (1987).CrossRefGoogle Scholar
2 Seth, J., Padiyath, R. and Babu, S. V., J. Vac. Sci. Technol., A 10, 284 (1992).Google Scholar
3 Lee, K.-R., Baik, Y.-J., Eun, K.-Y., Diamond and Related Materials, in press (1993).Google Scholar
4 Weissmentel, C., Schürer, C., Fröhlich, F., Grau, P. and Lehmann, H., Thin Solid Films, 61, L5 (1979).Google Scholar
5 Angus, J. C., Koidl, P. and Domitz, S., in Plasma Deposited Thin Films, edited by Mort, J. and Jansen, F. (CRC, Boca Raton, FL, 1986), p. 89.Google Scholar
6 Weissmantel, C., Bewilogua, K., Dietrich, D., Erler, H.-J., Hinneberg, H.-J., Klose, S., Nowick, W. and Reisse, G., Thin Solid Films, 72, 19 (1980).Google Scholar
7 Tamor, M. A., Vassell, W. C. and Carduner, K. R., Appl. Phys. Lett. 58, 592 (1991).CrossRefGoogle Scholar
8 Enke, K., Thin Solid Films, 80, 227 (1981).CrossRefGoogle Scholar
9 McKenzie, D. R., Muller, D., Pailtliorpe, B. A., Wang, Z. H., Kravtchinskaia, E., Segal, D., Lukins, P. B., Swift, P. D., Martin, P. J., Amaratunga, G., Gaskell, P. H. and Saeed, A., Diamond and Related Materials, 1, 51 (1991).Google Scholar
10 Zou, J. W., Reichelt, K., Schmidt, K. and Dischler, B., J. Appl. Phys. 65, 3914 (1989).CrossRefGoogle Scholar
11 Roth, A., Vacuum Technology, 3rd ed. (Elsevier Sciences Publishers, Amsterdam, 1990), p. 38.Google Scholar
12 Zou, J. W., Schmidt, K., Reichelt, K. and Dischler, B., J. Appl. Phys. 67, 487 (1990).Google Scholar
13 Couderc, P. and Catherine, Y., Thin Solid Films, 146, 93 (1987).Google Scholar
14 Prince, E. T., J. Appl. Phys. 70, 4903 (1991).CrossRefGoogle Scholar
15 Jiang, X., Zou, J. W., Reichelt, K. and Grünberg, P., J. Appl. Phys. 66, 4729 (1989).Google Scholar
16 Skoog, D. A. and Leary, J. J., Principles of Instrumental Analysis, 4th ed. (Saunders College Publishing, Fort Worth, 1992), p. 695.Google Scholar
17 Brenner, A. and Senderoff, S., J. Res. Natl. Bur. Std., 42, 105 (1949).Google Scholar
18 Brantley, W. A., J. Appl. Phys. 44, 534 (1973).CrossRefGoogle Scholar
19 Bubenzer, A., Dischler, B., Brandt, G. and Koidl, P., J. Appl. Phys., 54, 4590 (1983).Google Scholar
20 Nir, D., J. Vac. Sci. Technol. A 4, 2954 (1986).Google Scholar
21 Nyaiesh, A. R. and Nowak, W. B., J. Vac. Sci. Technol., A 1, 308 (1983).Google Scholar
22 CRC Handbook of Chemistry and Physics, 68th ed. edited by Weast, R. C. (CRC, Boca Raton, FL, 1988).Google Scholar
23 Wild, Ch., Wagner, J. and Koidl, P., J. Vac. Sci. Technol., A 5, 2227 (1987).Google Scholar