Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-28T23:15:15.273Z Has data issue: false hasContentIssue false

Dependence of Hardness and Stiffness on Density of Ta2O5 and TiO2 Layers

Published online by Cambridge University Press:  15 February 2011

S. P. Baker
Affiliation:
Max-Planck-Institut für Metallforschung, Seestr. 92, D-70174 Stuttgart, Germany
C. R. Ottermann
Affiliation:
Schott Glaswerke R&D, PO Box 24 80, D-55014 Mainz, Germany
M. Laube
Affiliation:
Universität Frankfurt, Institut für Kernphysik, D-60486, Frankfurt, Germany
F. Rauch
Affiliation:
Universität Frankfurt, Institut für Kernphysik, D-60486, Frankfurt, Germany
K. Bange
Affiliation:
Schott Glaswerke R&D, PO Box 24 80, D-55014 Mainz, Germany
Get access

Abstract

Highly refractive amorphous TiO2 and Ta2O5 films with thicknesses between 270 and 514 nm were deposited on fused silica glass substrates by reactive evaporation and reactive ion plating. Density, hardness, and stiffness were investigated as a function of deposition process. The films were examined using Rutherford backscattering spectroscopy and were found to have densities between 72 and 100% of those of the corresponding bulk oxides. Nanoindentation studies indicated a strong correlation between density and both hardness and elastic stiffness of the oxide film materials. Hardness and modulus both varied by more than 40% over this density range.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Ottermann, C., Otto, J., Jeschkowski, U., Anderson, O., Heming, M. and Bange, K., in Thin Films: Stresses and Mechanical Properties IV, (Edited by Townsend, P. H., Weihs, T. P., Jr, J. E. S.. and Børgesen, P.). Proc. Materials Research Society, Vol.308, (1993) p. 69.Google Scholar
2. Ottermann, C.R., Heming, M. and Bange, K., in Thin Films: Stresses and Mechanical Properties V, (Edited by Baker, S. P., Ross, C. A., Townsend, P. H., Volkert, C. A. and Børgesen, P.). Proc. Materials Research Society, Vol.356, (1995) p. 187.Google Scholar
3. Ottermann, C., Temmink, A. and Bange, K., Proc. SPIE 1272, 111 (1990).Google Scholar
4. Doolittle, L.R., Nucl. Instrum. Methods B 9, 344 (1985).Google Scholar
5. Laube, M., Rauch, F., Ottermann, C., Anderson, O. and Bange, K., Nucl. Instrum. Methods B in press.Google Scholar
6. Nano Instruments Inc., “Nanoindenter II,” Oak Ridge, TNGoogle Scholar
7. Oliver, W.C. and Pharr, G.M., J. Mater. Res. 7, 1564 (1992).Google Scholar
8. Martin, P.J., Benavid, A., Swain, M., Netterfield, R.P., Kinder, T.J., Sainty, W.G., Drage, D. and Wielunsky, L., Thin Solid Films 239, 181 (1993).Google Scholar
9. Scholze, H., Glass: nature, structure and properties, Springer-Verlag, New York (1991).Google Scholar
10. Li, H. and Bradt, R.C., Journal of Non-Crystalline Solids 146, 197 (1992).Google Scholar
11. Laursen, T.A. and Simo, J.C., J. Mater. Res. 7, 618 (1992).Google Scholar
12. Ottermann, C.R., Bange, K., Braband, A., Haefke, H. and Gutmannsbauer, W., elsewhere in these ProceedingsGoogle Scholar
13. Ottermann, C.R., Kuschnereit, R., Anderson, O., Hess, P. and Bange, K., elsewhere in these ProceedingsGoogle Scholar