Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-25T17:51:22.090Z Has data issue: false hasContentIssue false

Dependence of H Diffusion in Hydrogenated Silicon on Doping and the Fermi Level

Published online by Cambridge University Press:  17 March 2011

Wolfhard Beyer
Affiliation:
Institut für Schicht- und Ionentechnik (ISI-IPV), Forschungszentrum Jülich, D-52425 Jülich, Germany
Uwe Zastrow
Affiliation:
Institut für Schicht- und Ionentechnik (ISI-IPV), Forschungszentrum Jülich, D-52425 Jülich, Germany
Get access

Abstract

For three types of hydrogenated silicon films, amorphous, microcrystalline and crystalline hydrogenated silicon, hydrogen diffusion was studied as a function of doping level employing depth profiling by secondary ion mass spectrometry. Hydrogen implantation was used to control the hydrogen concentration. All three materials show a similar doping dependence of H diffusion, namely a strong increase upon boron (p-type) doping and a much lesser increase for n- type (P, As) doping. In a band model of H diffusion, the effect is related to a decrease in energy of the hydrogen diffusion path. Possible explanations are a different charge state of diffusing hydrogen or an effect of the Fermi energy on the release energy of neutral hydrogen.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Beyer, W., Wagner, H. and Mell, H., Solid State Commun. 39, 375 (1981); W. Beyer and H. Wagner, J. Phys. (Paris) 42 (C4) 787 (1981), W. Beyer and H. Wagner, J. Non-Cryst. Solids 59&60, 161 (1983).Google Scholar
2. Street, R.A., Tsai, C.C., Kakalios, J. and Jackson, W.B., Philos. Mag. B 56, 305 (1987).Google Scholar
3. Beyer, W., Herion, J., Mell, H. and Wagner, H., Mat. Res. Soc. Symp. Proc. 118, 291 (1988).Google Scholar
4. Beyer, W., J.Non-Cryst. Solids (2000), in print.Google Scholar
5. Beyer, W., Herion, J., Wagner, H. and Zastrow, U., Philos. Mag. B 63, 269 (1991).Google Scholar
6. Finger, F., Prasad, K., Shah, A., Tang, X.-M., Weber, J. and Beyer, W., Mat. Res. Soc. Symp. Proc. 219, 383 (1991).Google Scholar
7. Nickel, N. H. and Kaiser, I., Mat. Res. Soc. Symp. Proc. 513, 165 (1998)Google Scholar
8. Stutzmann, M., in: Properties of Amorphous Silicon and its Alloys, Searle, T., ed. (Inspec, London,1998) p. 66.Google Scholar
9. Branz, H.M., Phys. Rev. B 60, 7725 (1999)Google Scholar
10. Beyer, W., in Semicond. and Semimetals 61, Nickel, N.H., ed (Academic, San Diego, 1999) 165.Google Scholar
11. Beyer, W. and Overhof, H., in Semicond. and Semimetals 21C, Pankove, J.I., ed. (Academic Press, Orlando, 1984) 257.Google Scholar
12. Beyer, W. and Zastrow, U., J. Non-Cryst. Solids (2000), in print.Google Scholar
13. Street, R.A., Hack, M. and Jackson, W.B., Phys. Rev. B 37, 4309 (1988).Google Scholar
14. Beyer, W., Herion, J. and Wagner, H., J. Non-Cryst. Solids 114, 217 (1989)Google Scholar
15. Stuke, J., J. Non. Cryst. Solids 97–98, 1 (1987).Google Scholar
16. Walle, C.G. Van de, Denteneer, P.J.H., Bar-Yam, Y. and Pantelides, S.T., Phys. Rev. B 39, 10791 (1989).Google Scholar