Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-23T17:04:44.974Z Has data issue: false hasContentIssue false

Density-Functional Analysis on Vacancy Orbital and its Elastic Response of Silicon

Published online by Cambridge University Press:  31 January 2011

Takafumi Ogawa
Affiliation:
[email protected], Niigata University, Graduate school of science and technology, Niigata, Japan
Kenji Tsuruta
Affiliation:
[email protected], Okayama University, Graduate school of natural science and technology, Okayama, Japan
Hiroshi Iyetomi
Affiliation:
[email protected], Niigata University, Graduate school of science and technology, Niigata, Japan
Hiroshi Yamada Kaneta
Affiliation:
[email protected], Niigata University, Graduate school of science and technology, Niigata, Japan
Terutaka Goto
Affiliation:
[email protected], Niigata University, Graduate school of science and technology, Niigata, Japan
Get access

Abstract

Recent experiments on ultrasonic measurements of non-doped and boron-doped silicon indicate that vacancies in crystalline silicon can be detected through the elastic softening at low temperature. This is attributed to enhanced response of electronic quadrupole localized at the vacancies to the elastic strain. In the present work, the electronic quadrupole moment of the vacancy orbital in silicon and their strain susceptibility are evaluated quantitatively by using the density-functional method. We show the orbital of gap state is localized around vacancy but extended over several neighbors. The effect of applied magnetic field on the vacancy orbital and its multipole structures are also investigated. We find that the results obtained from these calculations are consistent with the ultrasonic experiments.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Baraff, G. A., Kane, E. O., Schlüter, M., Phys. Rev. B 21, 5662 (1980).10.1103/PhysRevB.21.5662Google Scholar
2. Watkins, G. D., Deep centers in semiconductors, edited by Pantelides, S. T. (Gordon and Breach, New York, 1986).Google Scholar
3. Watkins, G. D. and Troxell, J. R., Phys. Rev. Lett. 44, 593 (1980).10.1103/PhysRevLett.44.593Google Scholar
4. Ranki, V. and Saarinen, K., Phys. Rev. Lett. 93, 255502 (2004).10.1103/PhysRevLett.93.255502Google Scholar
5. Sugino, O. and Oshiyama, A., Phys. Rev. Lett. 68, 1858 (1992).10.1103/PhysRevLett.68.1858Google Scholar
6. Wright, A. F., Phys. Rev. B 74, 165116 (2006).10.1103/PhysRevB.74.165116Google Scholar
7. Goto, T., Kaneta, H. Y.-, Saito, Y., Nemoto, Y., Sato, K., Kakimoto, K., and Nakamura, S., J. Phys. Soc. Jpn. 75, 044602 (2006).10.1143/JPSJ.75.044602Google Scholar
8. Yamakawa, Y., Mitsumoto, K., and Õno, Y., J. Magn. Magn. Mater. 310, 993 (2007).10.1016/j.jmmm.2006.10.414Google Scholar
9. Matsuura, H. and Miyake, K., J. Phys. Soc. Jpn. 77, 043601 (2008).10.1143/JPSJ.77.043601Google Scholar
10. Yamada, T., Yamakawa, Y., and Õno, Y., J. Phys. Soc. Jpn. 78, 054702 (2009).10.1143/JPSJ.78.054702Google Scholar
11.ABINIT software project (http://www.abinit.org/); Gonze, X., Beuken, J.-M., Caracas, R., Detraux, F., Fuchs, M., Rignanese, G.-M., Sindic, L., Verstraete, M., Zerah, G., Jollet, F., Torrent, M., Roy, A., Mikami, M., Ghosez, Ph., Raty, J.-Y., and Allan, D. C., Computational Materials Science 25, 478 (2002).10.1016/S0927-0256(02)00325-7Google Scholar
12. Tsuruta, K., Ogawa, T., Iyetomi, H., Goto, T., Kaneta, H. Y.-, Totsuji, C., and Totsuji, H., Proc. of The Forum on the Science and Technology of Silicon Materials 2007, 75 (2007).Google Scholar
13. Hartwigsen, C., Goedecker, S., and Hutter, J., Phys. Rev. B 58, 3641 (1998).10.1103/PhysRevB.58.3641Google Scholar
14. Sugino, O. and Oshiyama, A., Phys. Rev. Lett. 68, 1858 (1992).10.1103/PhysRevLett.68.1858Google Scholar