Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-27T02:02:49.613Z Has data issue: false hasContentIssue false

Density Functional Theory Calculations and Molecular Dynamics Simulations of the Interaction of Bio-molecules with Hydroxyapatite Surfaces in an Aqueous Environment

Published online by Cambridge University Press:  01 February 2011

Neyvis Almora-Barrios
Affiliation:
[email protected], University College London, Chemistry, London, United Kingdom
Nora H de Leeuw
Affiliation:
[email protected], University College London, Chemistry, London, United Kingdom
Get access

Abstract

In view of the importance of the hydroxyapatite/collagen composite of both natural bone tissue and synthetic biomaterials for hard tissue replacement, we have employed a combination of electronic structure calculations based on the Density Functional Theory and molecular dynamics simulations to investigate the adsorption of three major collagen I amino acids, as well as a complete peptide strand, at two hydroxyapatite surfaces, both in vacuo and in a liquid water environment. The free amino acids as well as the peptide form multiple interactions with the surfaces and bind more strongly to the (01.0) surface than the (0001) surface, in agreement with experiment, which has found that in natural bone the (01.0) surface grows preferentially from a collagen matrix.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Deer, W.A., Howie, R.A. and Zussman, J., An introduction to the rock-forming minerals (Longman, Harlow, UK, 1992).Google Scholar
2. Narasaraju, T.S.B. and Phebe, D.E., J. Mater. Sci. 31, 1 (1996).Google Scholar
3. Ducheyne, P. and Qiu, Q., Biomaterials 20, 2287 (1999).Google Scholar
4. Fratzl, P., Gupta, H.S., Paschalis, E.P. and Roschger, P., J. Mater. Chem. 14, 2115 (2004).Google Scholar
5. Stevens, M.M. and George, J.H., Science 310, 1135 (2005).Google Scholar
6. Du, C., Falini, G., Fermani, S., Abbott, C. and Moradian-Oldak, J., Science 307, 1450 (2005).Google Scholar
7. Kirkham, J., Brookes, S.J., Shore, R.C., Wood, S.R., Smith, D.A., Zhang, J., Chen, H.F. and Robinson, C., Current Opinion in Colloid & Interface Sci. 7, 124 (2002).Google Scholar
8. Minton, A.P., Biophys. J. 76, 176 (1999).Google Scholar
9. Smith, C.E. and Nanci, A., Anatomical Record 245, 186 (1996).Google Scholar
10. Wen, H.B., Fincham, A.G. and Moradian-Oldak, J., Matrix Biology 20, 387 (2001).Google Scholar
11. Vanderby, R., J. Biomechanics 36, 1523 (2003).Google Scholar
12. Ambrosio, A.M.A., Sahota, J.S., Khan, Y. and Laurencin, C.T., Biomed, J.. Mater. Res. -Appl. Biomater. 58, 295 (2001).Google Scholar
13. Cho, S.B., Miyaji, F., Kokubo, T., Nakanishi, K., Soga, N. and Nakamura, T., J. Mat. Sci. – Mat. Medicine 9, 279 (1998).Google Scholar
14. Baig, A.A., Fox, J.L., Young, R.A., Wang, Z., Hsu, J., Higuchi, W.I., Chettry, A., Zhuang, H. and Otsuka, M., Calcif. Tissue Int. 64, 437 (1999).Google Scholar
15. Ordejon, P., Artacho, E. and Soler, J.M., Phys. Rev. B 53, 10441 (1996).Google Scholar
16. Kohn, W. and Sham, L.J., Phys. Rev. 140, 1133 (1965).Google Scholar
17. Perdew, J.P., Burke, K. and Ernzerhof, M., Phys. Rev. Lett. 77, 3865 (1996).Google Scholar
18. Troullier, N. and Martins, J.L., Phys. Rev. B 43, 8861 (1991).Google Scholar
19. Anglada, E., Soler, J.M., Junquera, J. and Artacho, E., Phys. Rev. B 66, 205101 (2002).Google Scholar
20. Junquera, J., Paz, O., Sanchez-Portal, D. and Artacho, E., Phys. Rev. B 64, 235111 (2001).Google Scholar
21. Fernandez-Serra, M.V., Junquera, J., Jelsch, C., Lecomte, C. and Artacho, E., Solid State Commun. 116, 395 (2000.Google Scholar
22. Smith, W. and Forester, T.R., J. Mol. Graph. 14, 136 (1996).Google Scholar
23. de Leeuw, N.H., J. Phys. Chem. B 108, 1809 (2004).Google Scholar
24. de Leeuw, N.H., Phys. Chem. Chem. Phys. 6, 1860 (2004).Google Scholar
25. de Leeuw, N.H. and Rabone, J.A.L., Cryst. Eng. Comm. 9, 1178 (2007).Google Scholar
26. Verlet, L., Phys. Rev. 195, 98 (1967).Google Scholar
27. Nosé, S., J. Chem. Phys. 81, 511 (1984).Google Scholar
28. Hoover, W.G., Phys. Rev. A 31, 1695 (1985).Google Scholar
29. Born, M. and Huang, K., Dynamical theory of crystal lattices (Clarendon Press, Oxford 1954).Google Scholar
30. Dick, B.G. and Overhauser, A.W., Phys. Rev. 112, 90 (1958).Google Scholar
31. Cornell, W.D., Cieplak, P., Bayly, C.I., Gould, I.R., Merz, K.M., Ferguson, D.M., Spellmeyer, D.C., Fox, T., Caldwell, J.W. and Kollman, P.A., J. Amer. Chem. Soc. 117, 5179 (1995).Google Scholar
32. Wang, J.M., Cieplak, P. and Kollman, P.A., J. Comput. Chem. 21, 1049 (2000).Google Scholar
33. Walser, R., Hunenberger, P.H. and van Gunsteren, W.F., Proteins-Structure Function and Genetics 43, 509 (2001).Google Scholar
34. Robinson, J., Cukrowski, I., Marques, H.M., J. Molec. Struct. 825, 134 (2006).Google Scholar
35. Stork, L., Muller, P., Dronskowski, R., Ortlepp, J.R., Z. Kristall. 220, 201 (2005).Google Scholar
36. de Leeuw, N.H., Chem. Commun. 1646 (2001).Google Scholar
37. Koutsopoulos, S. and Dalas, E., Langmuir 16, 6739 (2000); J. Cryst. Growth 216, 443 (2000).Google Scholar
38. Prockop, D.J. and Kivirikko, K.I., Ann. Rev. Biochem. 64, 403 (1995).Google Scholar