Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-27T02:13:37.092Z Has data issue: false hasContentIssue false

Density and Structure of Liquid Si-M (M=Fe, Ni, and Ge) Alloys

Published online by Cambridge University Press:  14 March 2013

Akitoshi Mizuno
Affiliation:
Department of Physics, Gakushuin University, Mejiro, Tokyo 171-8588, Japan
Kentaro Murai
Affiliation:
Department of Physics, Gakushuin University, Mejiro, Tokyo 171-8588, Japan
Hiroya Kawauchi
Affiliation:
Department of Physics, Gakushuin University, Mejiro, Tokyo 171-8588, Japan
Mitsuhiro Tannno
Affiliation:
Department of Physics, Gakushuin University, Mejiro, Tokyo 171-8588, Japan
Shinji Kohara
Affiliation:
Research and Utilization Division, Japan Synchrotron Radiation Research Institute/SPring-8, Kouto, Hyogo 679-5198, Japan
Masahito Watanabe
Affiliation:
Department of Physics, Gakushuin University, Mejiro, Tokyo 171-8588, Japan
Get access

Abstract

In order to elucidate a link between density and structure of liquid Si-M (M=Fe, Ni, and Ge) alloys, synchrotron x-ray diffraction experiments have been conducted with the use of a conical nozzle levitation technique. Liquid structure factors of the Si-Fe and the Si-Ni alloys indicate a correlation of medium range ordering with the increase of the Si content. Although the total molar volume expands with the increase of the Si content in these alloys, the concentration dependence of the average interatomic distance shows a minimum around 70 at.% Si content. On the other hand, the Si-Ge alloys shows tendency of concentration dependence as ideal mixture in both total molar volume and the average interatomic distance. These results were discussed taking into account the formation of anisotropic bonds between 3d transition metal and Si atoms, which may induce a spatial expansion in the microscopic scale.

Type
Articles
Copyright
Copyright © Materials Research Society 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Moroni, E., Wolf, W., Hafner, J., and Podloucky, R., Phys. Rev. B 59, 1286012871 (1999).CrossRefGoogle Scholar
Gu, T., Qin, J., Xu, C., and Bian, X., Phys. Rev. B 70, 17 (2004).Google Scholar
Dumay, C. and Cramb, A., Metall. Mater. Trans. B 26 (1995) 173.CrossRefGoogle Scholar
Wang, H.P., Yao, W.J., Cao, C.D., and Wei, B., Appl. Phys. Lett. 85, 3414 (2004).CrossRefGoogle Scholar
Wang, H.P., Cao, C.D., and Wei, B., Appl. Phys. Lett. 84, 4062 (2004).CrossRefGoogle Scholar
Chathoth, S.M., Damaschke, B., Samwer, K., and Schneider, S., Appl. Phys. Lett. 93, 071902 (2008).CrossRefGoogle Scholar
Kobatake, H., Fukuyama, H., Minato, I., Tsukada, T. and Awaji, S., Appl. Phys. Lett. 90 (2007) 094102.CrossRefGoogle Scholar
Tanno, M., Watanabe, M., Kawauchi, H., Mizuno, A., Adachi, M., Kobatake, H. and Fukuyama, H., Proc. 2nd Int. Symp. e-Therm, 116 (2010).Google Scholar
Kawauchi, H., Tanno, M., Mizuno, A., Watanabe, M., Kobatake, H. and Fukuyama, H., in preparation.Google Scholar
Kita, Y., Zeze, M., and Morita, Z., Trans. Iron Steel Inst. Jpn. 571 (1982).CrossRefGoogle Scholar
Kita, Y., Van Zytveld, J.B., Morita, Z., and Iida, T., J. Phys.: Condens. Matter. 6, 811820 (1994).Google Scholar
Il’inskii, A., Slyusarenko, S., Slukhovskii, O., Kaban, I., and Hoyer, W., J. Non-Cryst. Solids 306, 9098 (2002).CrossRefGoogle Scholar
Qin, J., Gu, T., and Bian, X., J. Phys.: Condens. Matter. 16, 47534760 (2004).Google Scholar
Naito, Y. and Inui, M., J. Non-Cryst. Solids 353, 33763379 (2007).CrossRefGoogle Scholar
Krishnan, S., Hennet, L., Key, T., Glorieux, B., Saboungi, M.-L., and Price, D.L., J. Non-Cryst. Solids 353, 29752981 (2007).CrossRefGoogle Scholar
Gruner, S., Marczinke, J., Hennet, L., Hoyer, W., and Cuello, G.J., J. Phys.: Condens. Matter. 21, 385403 (2009).Google Scholar
Krishnan, S. and Price, D. L., J. Phys.: Condens. Matter. 12 (2000) R145R176.Google Scholar
Mizuno, A., Matsumura, S., Watanabe, M., Kohara, S. and Takata, M., Mater. Trans. 46 (2005) 2799.CrossRefGoogle Scholar
Isshiki, M., Ohishi, Y., Goto, S., Takeshita, K. and Ishikawa, T., Nucl. Inst. Meth. A 467468 (2001) 663666..CrossRefGoogle Scholar
Kohara, S., Itou, M., Suzuya, K., Inamura, Y., Sakurai, Y., Y.Ohishi, and Takata, M., J.Phys. Condens. Matter.,19 (2007), 506101.CrossRefGoogle Scholar
Faber, T. E. and Ziman, J. M., Phil. Mag. 11 (1965) 153.CrossRefGoogle Scholar
Mizuno, A., Tannno, M., Takahashi, R., Kawauchi, H., and Watanabe, Masahito, Netsu Bussei, accepted.Google Scholar
Inui, M., Maruyama, K., Kajihara, Y., and Nakada, M., Phys. Rev. B 80, 14 (2009).CrossRefGoogle Scholar
Higuchi, K., Kimura, K., Mizuno, A., Watanabe, M., Katayama, Y., and Kuribayashi, K., Meas. Sci. Technol. 16, 381385 (2005).CrossRefGoogle Scholar
Stich, I., Car, R., and Parrinello, M., Phys. Rev. B 44, 4262 (1991).CrossRefGoogle Scholar
Kresse, G. and Hafner, J., Phys. Rev. B 49, 14251 (1994).CrossRefGoogle Scholar
Kulkarni, R. V., Aulbur, W. G., and Stroud, D., Phys.Rev. B, 55, 6896–903 (1997).CrossRefGoogle Scholar
Ansell, S., Krishnan, S., Felten, J. J., and Price, D. L., J. Phys.: Condens. Matter. 10, L73 (1998).Google Scholar
Kim, T. H., Lee, G.W., Sieve, B., Gangopadhyay, A. K., Hyers, R.W., Rathz, T. J., Rogers, J. R., Robinson, D. S., Kelton, K.F., and Goldman, A. I., Phys. Rev. Lett. 95, 085501 (2005).CrossRefGoogle Scholar
Morishita, T., Phys. Rev. Lett. 97, 47 (2006).CrossRefGoogle Scholar
Waseda, Y., The Structure of Non-Crystaline Materials, (McGraw-Hill, New York, 1980)Google Scholar