Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-25T15:36:05.749Z Has data issue: false hasContentIssue false

Densification of Sio Gel Films by Synchrotron Radiation and its Dependence on Photon Energy

Published online by Cambridge University Press:  15 February 2011

Hiroaki Imai
Affiliation:
Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku, Yokohama 223, Japan
Koichi Awazu
Affiliation:
Electrotechnical Laboratory, 1-1-4 Umezono, Tsukuba 305, Japan
Masaru Yasumori
Affiliation:
Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku, Yokohama 223, Japan
Hiroshi Hirashima
Affiliation:
Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku, Yokohama 223, Japan
Hideo Onuki
Affiliation:
Electrotechnical Laboratory, 1-1-4 Umezono, Tsukuba 305, Japan
Get access

Abstract

The interaction of synchrotron radiation (SR) emitted from a polarizing undulator with SiO2 gel films was investigated by ellipsometry and infrared spectroscopy. The photon energy in SR was varied in the range of 6.4−17.8 eV using an Onuki-type undulator in order to study the energy dependence of the interaction. We found that an increase of refractive index, a decrease of thickness of the films and a loss of OH groups were induced by photons with energies above ˜9 eV although any changes were not observed with photons below ˜7 eV. These results suggest that SiO2 gel films are densified through electronic processes stimulated by the energetic photons.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Fiori, C. and Devine, R.A.B., Phys.Rev.B, a 2972 (1986).Google Scholar
2. Takigara, Y., Kurosawa, K., Sasaki, W., Yoshida, K., Fujiwara, E., and Kato, Y., J.Non-Cryst.Solids 116., 293 (1990).Google Scholar
3. Rothschild, M., Ehrlich, D.J., and Shaver, D.C., Appl.Phys.Lett. 55L 1276 (1989).Google Scholar
4. Akazawa, H., Utsumi, Y., Takahashi, J., and Urisu, T., Appl.Phys.Lett. 57. 2302 (1990).Google Scholar
5. Akazawa, H., Takahashi, J., Utsumi, Y., Kawashima, I., and Urisu, T., J.Vac.Sci.Technol. As. 2653 (1991).Google Scholar
6. Awazu, K., Onuki, H., Iijima, S., and Watanabe, K., J.Non-Cryst. Solids (in press).Google Scholar
7. Moriya, Y.N., Shacaham-Diamand, , and Kalish, R., Appl.Phys.Lett. 57. 108 (1990).Google Scholar
8. Levine, T.E., Keddie, J.L., Revesz, P., Mayer, J.W., and Giannelis, E.P., J.Am.Ceram.Soc. 76, 1369 (1993).Google Scholar
9. Hirashima, H., Adachi, K. and Imai, H., Mat. Res. Soc. Proc. 34–6 183 (1994).Google Scholar
10. Maekawa, S. and Ohishi, T., J.Non-Cryst.Solids 169. 207 (1994).Google Scholar
11. Imai, H., Hirashima, H., Awazu, K., and Onuki, H., Proc.SPIE. (in press).Google Scholar
12. Imai, H., Hirashima, H., Awazu, K., and Onuki, H., J.Ceram.Soc.Jpn. 102. 1094 (1994).Google Scholar
13. Onuki, H., Saito, N., and Saito, T., Appl.Phys.Lett. 52. 173 (1988).Google Scholar
14. Galeener, F.L., Phys.Rev.B, 12. 4292 (1979).Google Scholar
15. Almeida, R.M., Guiton, T.A., and Pantano, C.G., J.Non-Cryst.Solids 12. 1193 (1990).Google Scholar
16. Almeida, R.M. and Pantano, C.G., J.Appl.Phys. A. 4225 (1990).Google Scholar
17. Hosono, H., J.Appl.Phys. 69. 8079 (1991).Google Scholar
18. Wong, J., J.Electron.Mater. 5, 113 (1976).Google Scholar
19. Griscom, D.J., J.Non-Cryst.Solids 6., 301 (1984).Google Scholar
20. Imai, H., Arai, K., Hosono, H., Abe, Y., Arai, T., and Imagawa, H., Phys.Rev.B, 44., 4812 (1991).Google Scholar
21. Awazu, K., J.Non-Cryst.Solids (in press).Google Scholar