Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-25T18:22:55.234Z Has data issue: false hasContentIssue false

Densification of Ceramics by Gas Overpressure Sintering

Published online by Cambridge University Press:  15 February 2011

G. E. Gazza
Affiliation:
U.S. Army Materials Technology Laboratory, Watertown, MA 02172–0001
R. N. Katz
Affiliation:
U.S. Army Materials Technology Laboratory, Watertown, MA 02172–0001
Get access

Abstract

The use of various gas pressure sintering (GPS) techniques for densifying ceramics are reviewed for both oxides and non-oxides. Variations of the process are discussed with respect to process parameters selected, process sequence, and microstructural development. Theoretical considerations underlying the technique are presented. GPS and hot isostatic pressing are compared and the advantages and disadvantages of each are briefly discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Mitomo, M., J. Mat. Sci., 11, 1103, (1976)CrossRefGoogle Scholar
2. Priest, H.F., Priest, G.L., and Gazza, G.E., J. Am. Ceram. Soc., 60, (1 -2), 81, (1977)Google Scholar
3. Savage, J.A. and Lewis, K.L.,, SPIE, 683, Infrared and Optical Transmitting Materials (1986)Google Scholar
4. Saunders, K.J., Wong, T.Y., Hartnett, T.M., Tustison, R.W., and Gentilman, R.L., SPIE, 683, Infrared and Optical Transmitting Materials, (1986)Google Scholar
5. Gazza, G.E., Katz, R.N., and Priest, H.F., J. Amer. Ceram. Soc., 64, (11), C161, (Nov.1981)Google Scholar
6. Tani, E., Nishijima, M., Ichinose, H., Kishi, K., and Umebayashi, S., Yogyo-Kyokai-Shi, 94, (2), 300, (1986)Google Scholar
7. Greskovich, C., J. Amer. Ceram. Soc., 64, (12), 725, (1981)CrossRefGoogle Scholar
8. Kokmeijer, E., With, G. de, and Metselaar, R., J. Eur. Ceram. Soc., 8, 71, (1991)CrossRefGoogle Scholar
9. Bush, E.A., U.S.Patent 3,562,371, (9 Feb. 1971)Google Scholar
10. Hardtl, K.H., Amer. Ceram. Soc. Bull., 54, (2), 201, (1975)Google Scholar
11. , S-J., Kang, L., and Yoon, K.J., J. Eur. Ceram. Soc., 5, 135, (1989)Google Scholar
12. Yoon, K.J., and , S-J., Kang, L., J. Eur. Ceram. Soc., 6, 201, (1990)Google Scholar
13. Makishima, A., Mitomo, M., Tanaka, H., II, N., and Tsutsumi, M., Yogyo-Kyokai-Shi, 88, (11), 701, (1980)Google Scholar
14. Tani, E., Umebayashi, S., Kishi, K., Kobayashi, K., and Nishijima, M., Am. Ceram. Soc. Bull., 65, (9), 1311, (1986)Google Scholar
15. Suzuki, H., Hayashi, K., Yamamoto, T., and Miyake, K., J. Japan Soc. of Powder and Powder Metall., 21, (8), 10, (1975)CrossRefGoogle Scholar
16. Nyce, A., U.S.Patent 4,591,482, (27 May 1986)CrossRefGoogle Scholar
17. Terwilliger, G.R. and Lange, F.F., “J. Mat. Sci., 10, 1169, (1975)Google Scholar
18. Greskovich, C.D. and Prochazka, S., J. Am. Ceram. Soc., 64, (7), C96, (1981)Google Scholar
19. Giachello, A., Martinegro, P.C., Tommasini, G., and Popper, P., Am. Ceram. Soc. Bull., 59, 1212, (1980)Google Scholar