Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-28T23:22:07.858Z Has data issue: false hasContentIssue false

Demonstration of a Novel Alkaline Battery Cathode Material: Periodate Salts

Published online by Cambridge University Press:  26 February 2011

Stuart Licht
Affiliation:
[email protected], Umass Boston, Chemistry, 100 Morrissey Blvd., Boston, MA, 02125, United States
Xingwen Yu
Affiliation:
[email protected], University of Massachusetts Boston, Department of Chemistry, 100 Morrissey Blvd., Boston, MA, 02125, United States
Get access

Abstract

An unusual solubility domain for KIO4 in KOH solution is observed, which is consistent with a potential use of periodate as a cathode for alkaline batteries. With increasing alkalinity, the solubility of KIO4 first increases, then drops from 2.9 M to < 10−4 M with increase from 6 to 10 M KOH. The unusual rapid transition from high to low solubility with increasing KOH is attributed to the formation of insoluble periodate complex. Accompanying the favorable low solubility in concentrated KOH is a high degree of cathodic electroactivity in accord with two electron storage: IO4 ⊒ IO3. Low cathode salt solubility minimizes interference with the anode. Zn anode alkaline batteries are studied with KIO4 and NaIO4 cathodes, have a potential of 1.4-1.5 V and discharge to over 95% of the intrinsic 2e charge capacity. The cathode also exhibits good quasi reversibility (rechargeability) with an alkaline metal hydride anode.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Bahramian, B., Mirkhani, V., Moghadam, M. and Tangestaninejad, S., Catalysis Comm. 7, 289 (2006).Google Scholar
2. Mirkhani, V., Tangestaninejad, S., Moghadam, M. and Karimian, Z., Bioorganic & Medicinal Chem. Lett. 13, 3433 (2003).Google Scholar
3. Smith, G. F., Analytical Applications of Periodic Acid and Iodic Acid and their salts, 5th ed. (The G. Frederick Smith Chemical Company, Columbus, OH 1950) p. 112.Google Scholar
4. Drummond, T. G., Lockhart, W. L., Slattery, S. J., Khan, F. A. and Leavitt, A. J., The Chem. Educator 2, 1430 (1997).Google Scholar
5. Lide, D. R., Handbook of Chemistry and Physics, 85th ed. (CRC Press, New York, 2004–2005) p. 477.Google Scholar
6. Hill, M., J. Am. Chem. Soc. 50, 2678 (1928).Google Scholar
7. Ward, D. E. and Solomos, D. P., U.S. Patent No. 6 945 851 (2005).Google Scholar
8. Smith, H. V., U.S. Patent No. 3 957 553 (1976).Google Scholar
9. Linden, D. and Reddy, T. B., Handbook of Batteries, 3rd ed. (McGraw-Hill 2002) p. 1.11.Google Scholar
10. Peramunage, D. and Licht, S., Science 261, 1029 (1993).Google Scholar
11. Licht, S., Wang, B. and Ghosh, S., Science 285, 1039 (1999).Google Scholar
12. Licht, S., Naschitz, V. and Ghosh, S., J. Phys. Chem., B 106, 5947 (2002).Google Scholar
13. Licht, S. and Tel-Vered, R., Chem. Comm. 628 (2004).Google Scholar
14. Licht, S. and DeAlwis, C., J. Phys. Chem., B 110, 12394 (2006).Google Scholar
15. Licht, S., Naschitz, V. and Ghosh, S., Electrochem. Solid-State Lett. 4, A209 (2001).Google Scholar
16. Licht, S., Ghosh, S. and Dong, Q., J. Electrochem. Soc. 148, A1072 (2001).Google Scholar
17. Marsh, C. and Licht, S., J. Electrochem. Soc. 141, L61 (1994).Google Scholar
18. Bard, A. J., Parsons, R. and Jordan, J., Standard Potentials in Aqueous Solution, (Marcel Decker, New York, 1985).Google Scholar
19. Myung, N. and Licht, S., J. Electrochem. Soc. 142, L129 (2001).Google Scholar