Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-25T15:46:09.905Z Has data issue: false hasContentIssue false

Degradation in Sn Films due to Whisker Formation

Published online by Cambridge University Press:  26 February 2011

L. Reinbold
Affiliation:
Eric Chason
Affiliation:
[email protected], Brown University, Division of Engineering, United States
N. Jadhav
Affiliation:
V. Kelly
Affiliation:
P. Holmes
Affiliation:
J.W. Shin
Affiliation:
W.L. Chan
Affiliation:
K.S. Kumar
Affiliation:
G. Barr
Affiliation:
Get access

Abstract

Whisker formation in pure Sn coatings on Cu conductors is a serious impediment to the development of Pb-free electronics manufacturing. Understanding whisker formation is complicated by the fact that it is the result of multiple materials kinetic processes including interdiffusion, intermetallic formation and stress generation We report preliminary studies of whisker growth kinetics and stress evolution aimed at developing a fundamental understanding of the whisker growth process. A proposed model of point defect mediated stress generation provides a simple picture of how the different processes are connected.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Cobb, H.L., “Cadmium Whiskers”, Monthly Rev. Am. Electroplaters Soc., 33 (28): pp. 2830 (1946).Google Scholar
[2] Brusse, J., “Tin Whiskers: Revisiting an Old Problem”, NASA's EEE Links Newsletter, 4 (4), pp. 57 (December 1998).Google Scholar
[3] Silverstein, S., “Reasons for Failure Lost with Galaxy 4”, Space News, pp. 3, 20 (August 17–23, 1998).Google Scholar
[4] NASA Goddard Space Flight Center Tin Whisker Experimentation Page, www.nepp.nasa.gov/whisker/experiment/index.html Google Scholar
[5] Glazunova, V.K., “A Study of the Influence of Certain Factors on the Growth of Filamentary Tin Crystals”, translated from Kristallografiya, 7(5): pp. 761768 (1962).Google Scholar
[6] Ellis, W.C., Gibbons, D.F., Treuting, R.C., “Growth of Metal Whiskers From the Solid”, Growth and Perfection of Crystals”, ed. Doremus, R.H., Roberts, B.W., and Turnbull, D., New York: John Wiley & Sons, pp. 102120 (1958).Google Scholar
[7] Dunn, B.D., “A Laboratory Study of Tin Whisker Growth”, European Space Agency (ESA) Report STR-223, pp. 151 (1987).Google Scholar
[8] Tsuji, K., “Role of Grain Boundary Free Energy & Surface Free Energy for Tin Whisker Growth”, Proc. of the IPC-Jedec Conf.-Frankfort, pp. 169186 (2003).Google Scholar
[9] Boguslavsky, I. and Bush, P., “Recrystallization Principles Applied to Whisker Growth in Tin”, Proc. of the 2003 APEX Conf.-Anaheim, CA., pp. S124–1 to S12–4–10 (2003).Google Scholar
[10] Lee, B.Z. and Lee, D.N., “Spontaneous Growth Mechanism of Tin Whiskers”, Acta Metallurgica, 46(10): pp. 37013714 (1998).Google Scholar
[11] Frank, F.C., “On Tin Whiskers”, Philosophical Magazine, Vol. 44, p. 851 (1953).Google Scholar
[12] Choi, W.J., Lee, T.Y., and Tu, K.N., “Structure and Kinetics of Sn Whisker Growth on Pb-free Solder Finish”, Proc. IEEE Elec. Comp. & Tech. Conf., pp. 628633 (2002).Google Scholar
[13] Xu, C., Zhang, Y., Fan, C.,, Abys, J., Hopkins, L., and Stevie, F., “Understanding Whisker Phenomenon: Driving Forces for the Whisker Formation”, Proc. IPC SMEMA APEX Conf., pp. S06–1 to S 06–2-6 (2002).Google Scholar
[14] Sheng, G.T.T., Hu, C.F., Choi, W.J., Tu, K.N., Bong, Y.Y., and Nguyen, L., “Tin Whiskers Studied by Focused Ion Beam Imaging and Transmission Electron Microscopy”, J. of Appl. Phys., 92(1): pp. 6469 (2002).Google Scholar
[15] Xu, C., Zhang, Y., Fan, C., and Abys, J., “Understanding Whisker Phenomenon: The Driving Force for Whisker Formation”, Circuitree, pp. 94105, April 2002. Available at www.circuitree.com. Google Scholar
[16] Eshelby, J.D., “A Tentative Theory of Metallic Whisker Growth”, Phys. Rev., 91: pp. 755756 (1953).Google Scholar
[17] Tu, K.N., “Interdiffusion and Reaction in Bimetallic Cu-Sn Thin films”, Acta Metallurgica, 21(4): pp. 347354 (1973).Google Scholar
[18] Fisher, R.M., Darken, L.S., and Carroll, K.G., “Accelerated Growth of Tin Whiskers”, Acta Metallurgica. 2(3): pp. 368372 (May 1954).Google Scholar
[19] Hasiguti, R.R, “A Tentative Explanation of the Accelerated Growth of Tin Whiskers”, Acta Metallurgica (letters to the editor), 3(2): pp.200201 (1955).Google Scholar
[20] Lindborg, U., “Observations on the Growth of Whisker Crystals from Zinc Electroplate”, Metallurgical Transactions A, 6A: pp. 15811586 (1975).Google Scholar
[21] Williams, M.E., Johnson, C.E., Moon, K.W., Stafford, G.R., Handwerker, C.A., and Boettinger, W.J., “Whisker Formation on Electroplated SnCu”, Proc. of AESF SUR/FIN Conf., pp. 3139 (2002).Google Scholar
[22] Tu, K.N. and Zeng, K., “Reliability Issues of Pb-free Solder Joints in Electronic Packaging Technology”, Proc. IEEE Elect. Comp. & Tech. Conf., pp. 11941199 (2002).Google Scholar
[23] Chang-Bing Lee, J., Yao, Y-L., Chiang, F-Y., Zheng, P.J., Liao, C.C., and Chou, Y.S., “Characterization Study of Lead-free SnCu Plated Packages”, Proc. IEEE Elect. Comp. & Tech. Conf., pp. 12381245 (2002).Google Scholar
[24] Zhang, Y., Xu, C., Fan, C., Abys, J., and Vysotskaya, A., “Understanding Whisker Phenomenon: Whisker Index and Tin/Copper, Tin/Nickel Interface”, Proc. IPC SMEMA APEX Conf., pp. S061–1 to S06–1–10 (2002).Google Scholar
[25] Zhang, Y., Fan, C., Xu, C., Khaselev, O., Abys, J.A., “Tin Whisker Growth – Substrate Effect Understanding CTE Mismatch and IMC Formation”, IPC Printed Circuits Expo, SMEMA Council APEX Designers Summit (2004).Google Scholar
[26] Boettinger, W.J., Johnson, C.E., Bendersky, L.A., Moon, K.-W., Williams, M.E., Stafford, G.R., “Whisker and Hillock formation on Sn, Sn–Cu and Sn–Pb electrodeposits”, Acta Mat. (2005) in press.Google Scholar
[27] Tu, K.N., “Irreversible Processes of Spontaneous Whisker Growth in Bimetallic Cu-Sn Thin Film Reactions”, Phys. Rev. B, 49, 2030 (1994).Google Scholar