Article contents
Degradation and Recovery of Si Diodes by 20-Mev Protons And 220-Mev Carbon Particles
Published online by Cambridge University Press: 10 February 2011
Abstract
Results are presented of a study on the degradation of the electrical performance of Fe contaminated n+p Si diodes, subjected to a 220-MeV carbon irradiation. The reverse current of the diodes increases after irradiation, while the capacitance and hence the doping concentration decreases. The areal and peripheral components of the leakage current are extracted from diodes with different area to perimeter ratios. Both the generation and the recombination lifetime calculated from I/V and C/V characteristics also decrease. The deep levels in the Si substrate induced by the irradiation are mainly responsible for the degradation of the diode performance. The radiation damage is also studied for 1 -MeV electrons and 1 -MeV fast neutrons. The performance degradation for carbon irradiation is three orders of magnitude larger than that for electron irradiation. The differences in the radiation damage are explained by the differences in the number of knock-on atoms and the nonionizing energy loss (NIEL), which is attributed to the difference of mass and the possibility of nuclear collision with target Si atoms
- Type
- Research Article
- Information
- Copyright
- Copyright © Materials Research Society 1998
References
- 1
- Cited by