Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-25T15:28:36.770Z Has data issue: false hasContentIssue false

Deformation of Transformation Toughened Zirconia

Published online by Cambridge University Press:  25 February 2011

James Lankford*
Affiliation:
Southwest Research Institute, Department of Materials Sciences, 6220 Culebra Road, San Antonio, TX 78284
Get access

Abstract

Recent experimental work on the yield and flow behavior of both single crystal and polycrystalline transformation toughened zirconia is presented. In addition, related work by other researchers is reviewed. The resulting picture is used to assess the relative plastic deformation contributions of phase transformations, dislocation activity, and grain boundary sliding. Particular emphasis is placed on the effects of stabilizer chemistry, grain size, temperature, strain rate, and state of stress. The results are shown to reflect the strong role of shear stresses in selecting, and controlling the operation of, each deformation mode.

Type
Articles
Copyright
Copyright © Materials Research Society 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Lankford, J., J. Am. Ceram. Soc. 66, C212 (1983).CrossRefGoogle Scholar
2. Lankford, J., J. Mat. Sci. 20, 53 (1985).Google Scholar
3. Lankford, J., J. Mat. Sci. 21, 1981 (1986).Google Scholar
4. Lankford, J., Rabenberg, L., Page, R. A., J. Am. Ceram. Soc. (submitted).Google Scholar
5. Dominguez-Rodriguez, A., Lagerlof, K. P. D., Heuer, A. H., J. Am. Ceram. Soc. 69, 281 (1986).Google Scholar
6. Dominguez-Rodriguez, A., Lanteri, V., Heuer, A. H., J. Am. Ceram. Soc. 69, 285 (1986).Google Scholar
7. McCartney, M. L., Donlon, W. T., Heuer, A. H., J. Mat. Sci. Lttrs. 15, 1063 (1980).Google Scholar
8. Wakai, F., Sakaguchi, S., Kanayama, K., Kato, H., Onishi, H., presented at the Second International Symposium on Ceramic Materials and Components for Engines, Lubeck-Travemunde, Federal Republic of Germany, 1986 (unpublished).Google Scholar
9. Swain, M. V., J. Mat. Sci. Lttrs. 4, 848 (1985).Google Scholar
10. Drennan, J. and Hannink, R. H. J., J. Am. Ceram. Soc. 69, 541 (1986).Google Scholar
11. Ruhle, M., Claussen, N., Heuer, A. H., in Science and Technology of Zirconia II, edited by Claussen, N. and Heuer, A. H. (The American Ceramic Society, Columbus, OH, 1984), p. 352.Google Scholar
12. Ingel, R. P., Lewis, O., Bender, B. A., Rice, R. W., Com. Am. Ceram. Soc. 65, C150 (1982).Google Scholar
13. Larsen, D. C. and Adams, J. W., AFWAL Report No. 10, Contract F33615–79-C-5100, April, 1981.Google Scholar
14. Wakai, F., Sakaguchi, S., Matsuno, Y., Adv. Ceram. Mat. 1, 259 (1986).Google Scholar
15. Lankford, J., Com. Am. Ceram. Soc. 65, C122 (1982).Google Scholar
16. Dalgleish, B. J. and Evans, A. G., J. Am. Ceram. Soc. 68, 44 (1985).Google Scholar