Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-27T01:51:39.918Z Has data issue: false hasContentIssue false

Deformation Microstructure Under Nanoindentations in Cu Using 3D X-Ray Structural Microscopy

Published online by Cambridge University Press:  11 February 2011

Wenge Yang
Affiliation:
Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
B. C. Larson
Affiliation:
Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
G. M. Pharr
Affiliation:
Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 University of Tennessee, Knoxville, Tennessee 37996
G. E. Ice
Affiliation:
Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
J. G. Swadener
Affiliation:
MST-8, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
J. D. Budai
Affiliation:
Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
J. Z. Tischler
Affiliation:
Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
Wenjun Liu
Affiliation:
Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
Get access

Abstract

We have used a recently developed x-ray structural microscopy technique to make nondestructive, submicron-resolution measurements of the deformation microstructure below a 100mN maximum load Berkovich nanoindent in single crystal Cu. Direct observations of plastic deformation under the indent were obtained using a ∼0.5 μm polychromatic microbeam and diffracted beam depth profiling to make micron-resolution spatially-resolved x-ray Laue diffraction measurements. The local lattice rotations underneath the nanoindent were found to be heterogeneous in nature as revealed by geometrically necessary dislocation (GND) densities determined for positions along lines beneath a flat indent face and under the sharp Berkovich indent blade edges. Measurements of the local rotation-axes and misorientation-angles along these lines are discussed in terms of crystallographic slip systems.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Hughes, D.A. and Hansen, N., Acta Mater., 45, 3871 (1997).Google Scholar
[2] Huang, Y., Xue, Z., Gao, H., Nix, W. and Xia, Z.C., J. Mater. Res., 15, 1786 (2000).Google Scholar
[3] Needleman, A., Acta Mater., 48, 105 (2000).Google Scholar
[4] Hughes, D.A., Chrzan, D.C., Liu, Q. and Hansen, N., Phys. Rev. Lett., 81, 4664, (1998).Google Scholar
[5] Thompson, J.B. et al., Nature, 414, 773 (2001).Google Scholar
[6] Lawn, B.R., Padture, N.P., Cai, H.D. and Guiberteau, F., Science, 263, 1114 (1994).Google Scholar
[7] Xue, Z., Huang, Y., Hwang, K.C. and Li, M., J. Eng. Mater. Tech., 124, 371 (2002).Google Scholar
[8] Ma, Q. and Clarke, D.R., J. Mater. Res., 10, 853 (1995).Google Scholar
[9] Swadener, J.G., George, E.P., Pharr, G.M., J. Mech Phys. Solids, 50, 681 (2002).Google Scholar
[10] Harvey, S., Huang, H., Venkataraman, S. and Gerberich, W.W., J. Mater. Res., 8, 1291 (1993).Google Scholar
[11] Bradby, J.E. et al., Appl. Phys. Lett., 77, 3749 (2000).Google Scholar
[12] Larson, B.C., Yang, W., Ice, G.E., Budai, J.D. and Tischler, J.Z., Nature, 415, 887 (2002).Google Scholar
[13] Ice, G.E. and Larson, B.C., Adv. Eng. Mat., 2, 643 (2000).Google Scholar
[14] Poulsen, H.F. et al., J. Appl. Cryst., 34, 751 (2001).Google Scholar
[15] Margulies, L., Winther, G., and Poulsen, H.F., Science, 292, 2392 (2001).Google Scholar
[16] Barabash, R., Ice, G.E., Larson, B.C., Pharr, G.M., Chung, K.-S., and Yang, W., Appl. Phys. Lett., 79, 4 (2001).Google Scholar
[17] Chiu, Y.L. and Ngan, A.H.W., Acta Mater., 50, 2677 (2002).Google Scholar