Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-27T02:06:55.439Z Has data issue: false hasContentIssue false

Deformation Mechanisms of Nanocrystalline Hexagonal Close-Packed Metals

Published online by Cambridge University Press:  01 February 2011

Guangping Zheng*
Affiliation:
[email protected], University of Hong Kong, Department of Mechanical Engineering, Pokfulam Road, Hong Kong, N/A, 10000, China, People's Republic of
Get access

Abstract

Using molecular dynamics simulation of nanocrystalline (nc) samples with grain size of 10 nm, a reverse martensitic transformation from hexagonal close-packed (hcp) to face-centered cubic (fcc) structure is observed in nc-cobalt and nc-zirconium undergoing plastic deformation. In nc-cobalt hcp-to-fcc transformation is prevalent and deformation twinning is rarely observed. The transformation mechanism involves the motion of Shockley partial dislocation 1/3<1100> in every other (0001)hcp /(111)fcc plane. In nc-zirconium the hcp-to-fcc transformation competes with the deformation twinning. From the simulation results, it is suggested that the interaction among partials should be considered to understand the deformation mechanisms of hcp nc metals.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Jia, D., Wang, Y. M., Ramesh, K. T., Ma, E., Zhu, Y. T., Valiev, R. Z., Appl. Phys. Lett. 79, 611 (2001).Google Scholar
2. Karimpoor, A. A., Erb, U., Aust, K. T., Palumbo, G.. Scripta Mater 49, 651 (2003).Google Scholar
3. Hwang, S., Nishimura, C., McCormick, P.G., Scripta mater. 44, 15071511 (2001).Google Scholar
4. Liao, X. Z., Zhou, F., Lavernia, E. J., He, D. W., Zhu, Y. T.. Appl. Phys. Lett. 83, 5062 (2003).Google Scholar
5. Chen, M., Ma, E., Hemker, K. J., Wang, Y. M., and Cheng, X.. Science 300, 1275 (2003).Google Scholar
6. Swygenhoven, H. van, Derlet, P. M., and Froseth, A. G., Nature Materials 3, 399 (2004).Google Scholar
7. Yamakov, V., Wolf, D., Phillpot, S. R., Mukherjee, A. K., and Gleiter, H.. Nature Materials 3, 43 (2004).Google Scholar
8. Zheng, G. P., Wang, Y. M., and Li, M.. Acta Mater. 53, 6800 (2005).Google Scholar
9. Cleri, F., Rosato, V.. Phys. Rev. B 48, 22 (1993).Google Scholar
10. Ackland, G. J., Wooding, S. J., and Bacon, D. J., Philos. Mag. A 71, 553 (1995).Google Scholar
11. Honeycutt, J. D., Andersen, H. C.. J. Chem. Phys. 91, 4950 (1987).Google Scholar
12. Nishiyama, Z., Martensitic Transformations, Academic, New York, 1978.Google Scholar
13. Bernstein, N., and Tadmor, E. B., Phys. Rev. B 69, 094116 (2004).Google Scholar
14. Berghezan, A., Foc'rdeux, A., and Amelinckx, S.. Acta metall. 9, 464 (1961).Google Scholar