Article contents
Deformation Mechanisms of Nanocrystalline Hexagonal Close-Packed Metals
Published online by Cambridge University Press: 01 February 2011
Abstract
Using molecular dynamics simulation of nanocrystalline (nc) samples with grain size of 10 nm, a reverse martensitic transformation from hexagonal close-packed (hcp) to face-centered cubic (fcc) structure is observed in nc-cobalt and nc-zirconium undergoing plastic deformation. In nc-cobalt hcp-to-fcc transformation is prevalent and deformation twinning is rarely observed. The transformation mechanism involves the motion of Shockley partial dislocation 1/3<1100> in every other (0001)hcp /(111)fcc plane. In nc-zirconium the hcp-to-fcc transformation competes with the deformation twinning. From the simulation results, it is suggested that the interaction among partials should be considered to understand the deformation mechanisms of hcp nc metals.
Keywords
- Type
- Research Article
- Information
- Copyright
- Copyright © Materials Research Society 2006
References
- 1
- Cited by