Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-17T17:02:05.282Z Has data issue: false hasContentIssue false

Defects Induced by Helium Implantation: Impact on Boron Diffusivity

Published online by Cambridge University Press:  01 February 2011

F. Cayrel
Affiliation:
Universitéde Tours, L.M.P, 16, rue Pierre et Marie Curie, B.P. 7155, F37071 TOURS Cedex, France
D. Alquier
Affiliation:
Universitéde Tours, L.M.P, 16, rue Pierre et Marie Curie, B.P. 7155, F37071 TOURS Cedex, France
C. Dubois
Affiliation:
L.P.M. - INSA Lyon, 20 rue A. Einstein, F-69621 Villeurbanne Cedex, France.
R. Jerisian
Affiliation:
Universitéde Tours, L.M.P, 16, rue Pierre et Marie Curie, B.P. 7155, F37071 TOURS Cedex, France
Get access

Abstract

High dose helium implantation followed by a suitable thermal treatment induces defects such as cavities and dislocations. Gettering efficiency of this technique for metallic impurities has been widely proved. Nevertheless, dopants, as well as point defects, interact with this defect layer. Due to the presence of vacancy type defects after helium implantation, boron diffusion can be largely influenced by such a buried layer. In this paper, we study the influence of helium induced defects on boron diffusion. The boron diffusion in presence of these defects has been analyzed as a function of different parameters such as distance between boron profile and defect layer and defect density. Our results demonstrate that the major impact known as boron enhanced diffusion can be partially or completely suppressed depending on parameters of experiments. Moreover, these results clarify the interaction of boron with extended He-induced defects.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Hugo, S.A. Mc and Hielsmair, H., in Electrical and Electronics Engineering, Vol 8, Ed. Webster, J.G., Wiley-Interscience Publication, 388 (1998).Google Scholar
2 Kang, J.S. and Schroder, D.K., J. Appl. Phys. 65 (8), 2974 (1989).Google Scholar
3 Perichaud, I., Yakimov, E., Martinuzzi, S. and Dubois, C., J. Appl. Phys. (90) 6, 2806 (2001).Google Scholar
4 Roqueta, F., Grob, A., Grob, J.J., Dubois, C., Fauré, J. and Ventura, L., Solid State Phenom., Vols 69-70, 241 (1999).Google Scholar
5 Myers, S.M., Seibt, M., Schoter, W., J. Appl. Phys. 88, 3795 (2000).Google Scholar
6 Cayrel, F., Alquier, D., Ventura, L., Vincent, L., Roqueta, F., Dubois, C. and Jerisian, R., Solid State Phenom. Vol. 95-96, 297306 (2004).Google Scholar
7 Cayrel, F., Alquier, D., Mathiot, D., Ventura, L., Roqueta, F., Gaudin, G. and Jérisian, R., Nucl. Instr. and Meth. B 216, 291296 (2004).Google Scholar
8 Raineri, V., Saggio, M. and Rimini, E., J. Mater. Res., Vol. 15, N°. 7, 14491477 (2000)Google Scholar
9 Wong-Leung, J., Williams, J.S. and Petravic, M., Appl. Phys. Lett., Vol. 72, N°. 19, 24182420 (1998).Google Scholar
10 Wang, S. and Zhu, P., Mater. Sci. Eng. B72, 142145 (2000).Google Scholar
11 Pichler, P., Jungling, W., Selberherr, S., Guerrero, E., Pötzl, H.W., IEEE Trans. Computer-Aided Design 4, 384 (1985).Google Scholar
12 Ural, A., Griffin, P.B., Plummer, J.D., J. Appl. Phys. 85, 6440 (1999).Google Scholar
13 Jain, S.C., Schoenmaker, W., Lindsay, R., Stolk, P.A., Decoutere, S., Willander, M., Maes, H.E., J. Appl. Phys. 91, 8919 (2001).Google Scholar
14 Claverie, A., Colombeau, B., Cristiano, F., Altibelli, A. and Bonafos, C., Nuc. Instr. And Meth. In Phys. Res. B 186, 281286 (2002).Google Scholar
15 Follstaedt, D.M., Myers, S.M. and Stein, H.J., Mat. Res. Soc. Symp. Proc. Vol.279, 105 (1993).Google Scholar