Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-17T22:21:08.937Z Has data issue: false hasContentIssue false

Defects in Mbe-Grown GaAs/ScxEr1–xAs/GaAs Layers

Published online by Cambridge University Press:  28 February 2011

Jane G. Zhu
Affiliation:
Department of Materials Science and Engineering, Cornell University, Ithaca, NY 14853
Chris J. Palmstrdøm
Affiliation:
Bellcore, 331 Newman Springs Road, Red Bank, NJ 07701
C. Barry Carter
Affiliation:
Department of Materials Science and Engineering, Cornell University, Ithaca, NY 14853
Get access

Abstract

The microstructure and the structure of defects in GaAs/ScxEr1–xAs/GaAs (x=0 and 0.3) heterostructures grown on (100) GaAs substrates by molecular beam epitaxy have been characterized using transmission electron microscopy. The top GaAs layer forms islands on ScxEr1–xAs at the initial growth stage, and the area covered by GaAs varies with the growth temperature. In addition to regions of epitactic (100) GaAs, regions of {122}- and (111)-oriented GaAs are observed on (100)-oriented ScxEr1–xAs. A high density of stacking-fault pyramids is found in epilayers of GaAs grown on a thin epilayer of ErAs, where the ErAs layers are only one or two monolayers thick. The apex of each stacking-fault pyramid is located at the ScxEr1–xAs/GaAs interface.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Sands, T., Harbison, J.P., Chan, W.K., Schwarz, S.A., Chang, C.C., Palmstrom, C.J., and Keramidas, V.G., Appl. Phys. Lett. 52, 1216 (1988).Google Scholar
2 Wowchak, A.M., Kuznia, J.N., and Cohen, P.I., J. Vac. Sci. Technol. B 7, 733 (1989).Google Scholar
3. Chambers, S.A., J. Vac. Sci. Technol. B 7, 737 (1989).Google Scholar
4. Palmstrom, C.J., Fimland, B.-O., Sands, T., Garrison, K.C., and Bartynski, R., J. Appl. Phys. 65, 4753 (1989).Google Scholar
5. Zhu, J.G., Carter, C.B., Palmstrom, C.J., and Garrison, K.C., Appl. Phys. Lett. 55, 39 (1989).Google Scholar
6. Palmstrom, C.J., Tabatabaie, N., and Allen, S.J. Jr., Appl. Phys. Lett. 53, 2608 (1988).Google Scholar
7. Guivarc'h, A., Caulet, J., and Corre, A. Le, Electron. Lett. 25, 1050 (1989).Google Scholar
8. Palmstrom, C.J., Mounier, S., Finstad, T.G., and Miceli, P.F., Appl. Phys. Lett. 56, 382 (1990).Google Scholar
9. Zhu, J.G., Carter, C.B., Palmstrom, C.J., and Mounier, S., Appl. Phys. Lett. 56, 1323 (1990).Google Scholar
10. Guivarc'h, A., Corre, A. Le, Caulet, J., Guenais, B., Minier, M., Ropars, G., Badoz, P.A., and Duboz, J.Y., Mar. Res. Soc. Symp. Proc. 160, (1990, in press).Google Scholar
11. Ralston, J.D., Ennen, H., Wennekers, P., Hiesinger, P., Herres, N., Schneider, J., Mijller, H.D., Rothemund, W., Fuchs, F., Schmhlzlin, J., and Thonke, K., to be published in J. Electr. Mat.Google Scholar
12. Gevers, R., Landuyt, J. van, and Amelinckx, S., Phys. Stat. Sol. 18, 343 (1966).Google Scholar