Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-25T19:38:12.046Z Has data issue: false hasContentIssue false

Defects in Low—Temperature—Grown MBE GaAs

Published online by Cambridge University Press:  22 February 2011

David C. Look*
Affiliation:
University Research Center, Wright State University, Dayton, OH 45435
Get access

Abstract

Defect concentrations in molecular beam epitaxial (MBE) GaAs range from 1012 to 1020 cm-3 as the growth temperature is lowered from 600 to 200 °C; however, very high quality layers can be grown over this whole range. The dominant defect is the As antisite, but there is also good evidence for As interstitials and gallium vacancies. The particular form of the As antisite center in low—temperature (LT) MBE GaAs is not known at this time, but it is definitely not EL2, because both the thermal activation energy and the electron capture cross section differ significantly. However, other features, such as the EPR spectrum and metastable—to—normal recovery kinetics are identical to those of EL2. The donor (As antisite) to acceptor ratio seems to hold at about one order of magnitude as growth temperature is varied from 200 — 400 °C; thus, the Fermi level stays near mid—gap over this whole range. However, hopping conduction among the As antisite centers is strong for samples grown between 200 and 300 °C and keeps the material from being semi—insulating, while for those grown between 350 — 480 °C, the resistivity is greater than 107 Ω cm. The annealing dynamics are particularly interesting and include such features as the mobility going through a sharp maximum at an annealing temperature of 400 °C for a layer grown at 200 °C. The donor and acceptor concentrations can be determined both by Hall effect and absorption measurements as the layer is annealed up to 600 °C. Above 550 °C, large precipitates are formed. The relative roles of the precipitates and point defects in influencing compensation, lifetime, and device characteristics are a source of much controversy and will be discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Sakaki, H., in Malik, R.J. (ed.), III-V Semiconductor Materials and Devices (North Holland, Amsterdam, 1989) p. 217.Google Scholar
2. Murotani, T., Shimanoe, T., and Mitsui, S., J. Crystal Growth 45, 302 (1978).Google Scholar
3. Wood, C.E.C., Woodcock, J., and Harris, J.J., Inst. Phys. Conf. Ser. No. 45, 29 (1979).Google Scholar
4. Stall, R.A., Wood, C.E.C., Kirchner, P.D., and Eastman, L.F., Electronics Lett. 16, 171 (1980).Google Scholar
5. Metze, G.M. and Calawa, A.R., Appl. Phys. Lett. 42, 818 (1983).Google Scholar
6. Smith, F.W., Calawa, A.R., Chen, C.-L., Manfra, M.J., and Mahoney, L.J., IEEE Electron Device Lett. EDL–9, 77 (1988).Google Scholar
7. Witt, G.L., Calawa, A.R., Mishra, U., and Weber, E. (eds.), Mater. Res. Soc. Symp. Proc. 241 (1992).Google Scholar
8. Look, D.C., Thin Solid Films 231, 61 (1993).Google Scholar
9. Melloch, M.R., Otsuka, N., Woodall, J.M., Warren, A.C., and Freeouf, J.L., Appl. Phys. Lett. 57, 1531 (1990).Google Scholar
10. Warren, A.C., Woodall, J.M., Freeouf, J.L., Grischkowsky, D., Mclnturff, D.T., Melloch, M.R., and Otsuka, N., Appl. Phys. Lett. 57, 1331 (1990).CrossRefGoogle Scholar
11. Yu, K.M., Kaminska, M., and Liliental-Weber, Z., J. Appl. Phys. 72, 2850 (1992).Google Scholar
12. Liliental-Weber, Z., Swider, W., Yu, K.M., Kortright, J., Smith, F.W., and Calawa, A.R., Appl. Phys. Lett. 58, 2153 (1991).Google Scholar
13. Liliental-Weber, Z., Mat. Res. Soc. Symp. Proc. Vol. 241, 101 (1992).Google Scholar
14. Look, D.C., Walters, D.C., Mier, M., Stutz, C.E., and Brierley, S.K., Appl. Phys. Lett. 60, 2900 (1992).CrossRefGoogle Scholar
15. Kaminska, M., Weber, E.R., Liliental-Weber, Z., Leon, R., and Rek, Z.U., J. Vac. Sci. Technol. B. 7, 710 (1989).Google Scholar
16. Kaminska, M., Liliental-Weber, Z., Weber, E.R., George, T., Kortright, J.B., Smith, F.W., Tsaur, B.-Y., and Calawa, A.R., Appl. Phys. Lett. 54, 1881 (1989).Google Scholar
17. Bardeleben, H.J. von, Manasreh, M.O., Look, D.C., Evans, K.R., and Stutz, C.E., Phys. Rev. B 45, 3372 (1992).Google Scholar
18. Krambrock, K., Linde, M., Spaeth, J.M., Look, D.C., Bliss, D., and Walukiewicz, W., Semicond. Sci. and Tech. 7, 1037 (1992).Google Scholar
19. Silverberg, P., Omling, P., and Samuelson, L., Appl. Phys. Lett. 52, 1689 (1988).Google Scholar
20. Look, D.C., Walters, D.C., Manasreh, M.O., Sizelove, J.R., Stutz, C.E., and Evans, K.R., Phys. Rev. B 42, 3578 (1990).Google Scholar
21. Look, D.C., Walters, D.C., Robinson, G.D., Sizelove, J.R., Mier, M.G., and Stutz, C.E., J. Appl. Phys. L4, 306 (1993).Google Scholar
22. Dabrowski, J. and Scheffler, M., Phys. Rev. B 40, 10391 (1989).Google Scholar
23. Look, D.C., Fang, Z-Q., and Sizelove, J.R., Phys. Rev. Lett. 70, 465 (1993).Google Scholar
24. Bliss, D.E., Walukiewicz, W., Chan, K.T., Ager, J.W. II, Tanigawa, S., and Hailer, E.E., Mat. Res. Soc. Symp. Proc. Vol. 241, 93 (1992).Google Scholar
25. Keeble, D.J., Umlor, M.T., Asoka-Kumar, P., Lynn, K.G., and Cooke, P.W., Appl. Phys. Lett. 63, 87 (1993).Google Scholar
26. Puska, M.J., J. Phys.: Condens. Matter 1, 7347 (1989).Google Scholar
27. Fang, Z-Q. and Look, D.C., Appl. Phys. Lett. 61, 1438 (1992).CrossRefGoogle Scholar
28. Yu, P.W., Reynolds, D.C., and Stutz, C.E., Appl. Phys. Lett. 61, 1432 (1992).Google Scholar
29. Yin, L.-W., Hwang, Y., Lee, J.H., Kolbas, R.M., Trew, R.J., and Mishra, U.K., IEEE Electron Device Lett. 11, 561 (1990).Google Scholar
30. Chen, C-L., Smith, F.W., Clifton, B.J., Mahoney, L.J., Manfra, M.J., and Calawa, A.R., IEEE Electron Device Lett. 12, 306 (1991).CrossRefGoogle Scholar
31. Hwang, Y., Yin, W.L., Lee, J.H., Zhang, T., Kolbas, R.H., and Mishra, U.K., Abstracts of the 1990 Electronic Materials Conference (TMS, Warrendale, PA, 1990) p. 15.Google Scholar
32. Look, D.C., Stutz, C.E., and Evans, K.R., Appl. Phys. Lett. 57, 2570 (1990).Google Scholar
33. Chen, C-L., Mahoney, L.J., Manfra, M.J., Smith, F.W., Temme, D.H., and Calawa, A.R., IEEE Electron Device Lett. 13, 335 (1992).Google Scholar
34. Frankel, M.Y., Whitaker, J.F., Mourou, G.A., Smith, F.W., and Calawa, A.R., IEEE Trans. on Electron Devices ED–37, 2493 (1990).Google Scholar
35. Motet, T., Nees, J., Williamson, S., and Mourou, G., Appl. Phys. Lett. 59, 1455 (1991).Google Scholar