Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-28T23:30:13.786Z Has data issue: false hasContentIssue false

Defects in KTiOPO4

Published online by Cambridge University Press:  21 February 2011

P. A. Morris
Affiliation:
E.I. du Pont de Nemours & Co., Inc., Experimental Station, Wilmington, DE 19880
M. K. Crawford
Affiliation:
E.I. du Pont de Nemours & Co., Inc., Experimental Station, Wilmington, DE 19880
A. Ferretti
Affiliation:
E.I. du Pont de Nemours & Co., Inc., Experimental Station, Wilmington, DE 19880
R. H. French
Affiliation:
E.I. du Pont de Nemours & Co., Inc., Experimental Station, Wilmington, DE 19880
M. G. Roelofs
Affiliation:
E.I. du Pont de Nemours & Co., Inc., Experimental Station, Wilmington, DE 19880
J. D. Bierlein
Affiliation:
E.I. du Pont de Nemours & Co., Inc., Experimental Station, Wilmington, DE 19880
J. B. Brown
Affiliation:
E.I. du Pont de Nemours & Co., Inc., Experimental Station, Wilmington, DE 19880
G. M. Loiacono
Affiliation:
Philips Laboratories, Scarborough Rd., Briarcliff Manor, NY 10510
G. Gashurov
Affiliation:
Airtron, Litton System, Inc., E. Hanover Ave., Morris Plains, NJ 07950
Get access

Abstract

KTiOPO4 (KTP) is a nonlinear optical crystal presently used for second harmonic generation and electro-optic applications. The properties (ionic conductivity and damage susceptibility) of KTP crystals can vary depending on the specific technique and conditions used for growth. Consistent defect mechanisms have been determined to explain the observed AC conductivity and damage results of KTP grown by the flux and high and low temperature hydrothermal techniques. The presence of nonstoichiometry on the K and O sublattices in KTP, increasing in magnitude with temperature, is proposed. Using these defect mechanisms, the predominant defects compensating for the formation of vacant potassium sites (VK's) in flux and hydrothermal materials are vacant oxygen sites (VO's) and OH's, respectively. The presence of a more varied distribution of OH sites at room temperature in high temperature hydrothermal material with higher AC conductivity indicates the importance of specific OH sites in the lattice that may enhance the mobility of ionic carriers. The correlation of higher AC conductivity to increased average current and damage in electric field treated KTP is explained on the basis of the proposed compensating defects (VO 's and OH 's) which set the [VK] and [Ti3+]. The similarity of the linear optical properties of KTP grown by the various techniques is confirmed by the insensitivity of the absorption edge to the nonstoichiometry or defects present.

Type
Research Article
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Zumsted, F.C., Bierlein, J.D., Gier, T.E., J. Appl. Phys. 41 (11), 4980 (1976).Google Scholar
2. Bierlein, J.D., Arweiler, C.B., Appl. Phys. Lett. 49 (15), 917 (1986).Google Scholar
3. Bierlein, J.D., SPIE Proc. 994, 160 (1988).CrossRefGoogle Scholar
4. Vanherzeele, H., Bierlein, J.D., Zumsted, F.C., Appl. Optics 27 (16) 3314 (1988).Google Scholar
5. Gier, T.E., U.S. Patent No. 4,305,778 (15 December 1981).Google Scholar
6. Laudise, R.A., Cava, R.J., Coporaso, A.J., J. of Crys. Growth 74, 275 (1986).Google Scholar
7. Belt, R.F., Gashurov, G., Laudise, R.A., SPIE Proc. 968, 100 (1988).Google Scholar
8. Jacco, J.C., Loiacono, G.M., Jaso, M., Mizell, G., Greenberg, B., J. Crys. Growth 70, 484 (1984).Google Scholar
9. Bordui, P.F., Jacco, J.C., Loiacono, G.M., J. Crys. Growth 84, 403 (1987).Google Scholar
10. Dezhong, S., Chaoen, J., Prog. Crys. Growth and Charact. 11, 269 (1985).Google Scholar
11. Defan, C., Zhegtang, Y., J. Crys. Growth 79, 974 (1986).Google Scholar
12. Kalesinkas, V.A., Pavlova, N.I., Rez, I.S., Grigas, J.P., Sov. Phys. Collect. 22, 68 (1982).Google Scholar
13. Yanovskil, V.K., Voronkova, V.I., Sov. Phys. Solid State 27 (7), 1308 (1985).Google Scholar
14. Torjman, I., Masse, R., Guitel, J.C., Z. Kristallogr. 139, 103 (1974).Google Scholar
15. Guerra, V., Chouinard, M., (personal communication).Google Scholar
16. Driscoll, T.A., Hoffman, H.J., Stone, R.E., J. Opt. Soc. Am. B 3(5), 683 (1986).Google Scholar
17. Roelofs, M.G., J. Appl. Phys., June (1989) (to be published).Google Scholar
18. Lemeshko, V.V., Obukhovskii, V.V., Stoyanov, A.V., Pavlova, N.I., Pisanskii, A.I., Korotkov, P.A., Ukr. Fiz. Zh. Russ. Ed., 31 (11), 1745 (1986).Google Scholar
19. Northern Analytical Laboratory, Amherst, NH.Google Scholar
20. Theis, W.M., Norris, G.B., Appl. Phys. Lett. 46 (11), 1033 (1985).CrossRefGoogle Scholar
21. Ahmed, F., Belt, R.F., Gashurov, G., J. Appl. Phys. 60 (2), 839 (1986).Google Scholar
22. Kingery, W.D., Bowen, H.K., Uhlmann, D.R., Introduction to Ceramics, 2end ed. (J. Wiley, NY, 1976) p. 852.Google Scholar
23. Foldvari, I., Polgar, K., Mecseki, A., Acta Physica Hungarica 55 (1–4), 321 (1984).Google Scholar
24. Kasowski, R.V., French, R.H., Ohuchi, F.S., Morris, P.A. (to be published).Google Scholar