Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-25T15:54:02.904Z Has data issue: false hasContentIssue false

Defects and Surfactant Action of Antimony on GaAs and GaAs1-xNx on GaAs [100] by Molecular Beam Epitaxy

Published online by Cambridge University Press:  01 February 2011

W. K. Cheah
Affiliation:
Nanyang Technological University, School of Electrical and Electronic Engineering, Block S1, Nanyang Avenue, Singapore 639798, Republic of Singapore
W. J. Fan
Affiliation:
Nanyang Technological University, School of Electrical and Electronic Engineering, Block S1, Nanyang Avenue, Singapore 639798, Republic of Singapore
S. F. Yoon
Affiliation:
Nanyang Technological University, School of Electrical and Electronic Engineering, Block S1, Nanyang Avenue, Singapore 639798, Republic of Singapore
S. Wicaksono
Affiliation:
Nanyang Technological University, School of Electrical and Electronic Engineering, Block S1, Nanyang Avenue, Singapore 639798, Republic of Singapore
R. Liu
Affiliation:
Department of Physics, National University of Singapore, 2 Science Drive 3 Road, Singapore 117542, Republic of Singapore
A. T. S. Wee
Affiliation:
Department of Physics, National University of Singapore, 2 Science Drive 3 Road, Singapore 117542, Republic of Singapore
Get access

Abstract

Low temperature (4.5K) photoluminescence (PL) measurements of GaAs(N):Sb on GaAs grown by solid source molecular beam epitaxy (MBE) show a Sb-related defect peak at ∼1017nm (1.22eV). The magnitude of the Sb-related impurity PL peak corresponds in intensity with the prominence of the additional two-dimensional [115] high-resolution x-ray diffraction (HRXRD) defect peaks. The elimination of these defects can be a measure of the improvement in crystal quality of GaAsN:Sb and a Sb flux ≥ 1.3×10−8 Torr is needed to invoke the surfactant behavior in III-V dilute nitride MBE growth for a growth rate of 1μm/hr.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Dimroth, F., Howard, A., Shurtleff, J. K., and Stringfellow, G. B., J. Appl. Phys. 91, 3687 ( 2002).Google Scholar
2. Weyers, M., Sato, M., and Ando, H., Jpn. J. Appl. Phys. 32, L853, (1992).Google Scholar
3. Yang, X., Heroux, J. B., Jurkovic, M. J., and Wang, W. I., Appl. Phys. Lett. 76, 795 (2000).Google Scholar
4. Gambin, Vincent, Ha, Wonill, Wistey, Mark, Yuen, Homan, Bank, Seth R., Kim, Seongsin M., and Harris, James S. Jr, Fellow, IEEE, IEEE J. Selected Topics in Quantum Electronics 8, 795 (2002).Google Scholar
5. Lourenço, S. A., Dias, I. F. L., Poças, L. C., Duarte, J. L., de Oliveira, J. B. B., and Harmand, J. C., J. Appl. Phys. 93, 4475 (2003).Google Scholar
6. Harmand, J. C., Ungaro, G., Largeau, L., and Le Roux, G., Appl. Phys. Lett. 77, 2482 (2000).Google Scholar
7. Cheah, W. K., Fan, W. J., Wicaksono, S., Yoon, S.F., Tan, K. H., J. Crystal Growth 254, 305 (2003).Google Scholar
8. Yakimova, R., Omling, P., Yang, B. H. and Samuelson, L., Appl. Phys. Lett. 59, 1323 (1991).Google Scholar
9. Langmuir, I., J. Am. Chem. Soc. 40, 1361 (1918).Google Scholar
10. Brewer, P. D., Chow, D. H., and Miles, R. H., J. Vac. Sci. Technol. B14, 2335 (1996).Google Scholar
11. Campion, R.P., Edmonds, K.W., Zhao, L.X., Wang, K.Y., Foxon, C.T., Gallagher, B.L., and Staddon, C.R., J. Crystal Growth 247, 42 (2003).Google Scholar