Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-25T17:24:27.326Z Has data issue: false hasContentIssue false

Defect States in SiC/GaN-and SiC/AlGaN/GaN-Heterostructures Characterized by Admittance and Photocurrent Spectroscopy

Published online by Cambridge University Press:  15 February 2011

H. Witte
Affiliation:
Institute of Experimental Physics, University of Magdeburg, PO Box 4120, 39016 Magdeburg, Germany
A. Krtschil
Affiliation:
Institute of Experimental Physics, University of Magdeburg, PO Box 4120, 39016 Magdeburg, Germany
M. Lisker
Affiliation:
Institute of Experimental Physics, University of Magdeburg, PO Box 4120, 39016 Magdeburg, Germany
J. Christen
Affiliation:
Institute of Experimental Physics, University of Magdeburg, PO Box 4120, 39016 Magdeburg, Germany
F. Scholz
Affiliation:
4th Institute of Physics, University of Stuttgart, D-70550 Stuttgart, Germany
J. Off
Affiliation:
4th Institute of Physics, University of Stuttgart, D-70550 Stuttgart, Germany
Get access

Abstract

Deep defect levels in n-type GaN/AlN/6H-SiC- and GaN/AlGaN/6H-SiC- heterostructures grown by Metallorganic Vapor Phase Epitaxy were analyzed by Thermal and Optical Admittance and Photocurrent Spectroscopy. The various thermal and optical transitions in the spectra originating from both the Schottky contact as well as the GaN/SiC- and AlGaN/GaNheterojunctions were separated. This was achieved by variation of the modulation frequency, the use of different contact arrangements and by comparison with reference spectra from GaN/Sapphir samples and SiC substrates. In the GaN/AlGaN/SiC structures a bias voltage dependent peak shift was found which is correlated to an interface related defect distribution. In additionally to, SIC related defects, defect-band-transitions involving defects with transition energies at 2.2eV, 1.85eV, EG-(470±40) meV and EG-(65-95) meV were found for the GaN layer.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

/I/ Mohammad, S.N., Morkoc, H.: Progr. Quant. Electr. 20, 361525 (1996)Google Scholar
/2/ Osinsky, A., Gangopadhya, S., Lim, B.W., Anwar, M.Z., Khan, M.A., Kuksenkov, D.V., Temkin, H.: Appl. Phys. Lett. 72, 742 (1998)Google Scholar
/3/ Torvik, J.T., Qiu, C., Leksono, M., Pankove, J.I.: Appl. Phys. Lett. 72, 1371 (1998)Google Scholar
/4/ Torvik, J.T., Leksono, M., Pankove, J.I., VanZeghbroeck, B., Ng, H.M., Moustakas, T.D. Appl. Phys. Lett. 72, 945 (1998)Google Scholar
/5/ Kusnetzov, N.I., Gubenco, A.E., Nicolaev, A.E., Melnik, Yu.V., Blashenkov, M.N., Nikita, I.P., Dmitriev, V.A.: Mater. Sci. Engin. B46, 74 (1997)Google Scholar
/6/ Krtschil, A., Witte, H., Lisker, M., Christen, J., Birkle, U., Einfeldt, S., Hommel, D., Topf, M., Meyer, B.K.: Mater. Res. Soc. Symp. Proc. 482, 887 (1997)Google Scholar
/7/ Dmitriev, V.A.: MIJ-NSR 1 (1997) Art. 29Google Scholar
/8/ Barbolla, J., Duenas, S., Bailon, L.: Sol. State Electron. 35, 285 (1992)Google Scholar
/9/ Krtschil, A., Lisker, M., Witte, H., Christen, J., Birle, U., Einfeldt, S., Hommel, D.; Accepted for Mater. Science and Engineering BGoogle Scholar
/10/ Pensl, G., Troffer, T.: Sol. State Phenomena 47–48, 115 (1996)Google Scholar
/11/ Leon, C., Martin, M., Santamaria, J., Skarp, J., Gonzalez-Diaz, G., Sanchez-Queseda, F.: J. Appl. Phys. 79, 7830 (1996)Google Scholar
/12/ Nicolian, E.H., Brews, J.R.: MOS Physics and Technology, John Wiley & Sons, New York, 1982 Google Scholar
/13/ Hacke, P., Okushi, H.: Appl. Phys. Lett. 71, 524 (1997)Google Scholar
/14/ Gotz, W.. Johnson, N.M., Bour, D.P., Chen, C., Liu, H., Kuo, C., Imler, W.: Mater. Res. Soc. Symp. Proc. 395, 443 (1996)Google Scholar
/15/ Monemar, B.: Phys. Rev. B 10, 676 (1974)Google Scholar