Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-29T07:53:06.399Z Has data issue: false hasContentIssue false

Defect Saturation in a-SiGe:H(F) Alloys

Published online by Cambridge University Press:  21 February 2011

N.W. Wang
Affiliation:
Princeton University, Department of Electrical Engineering, Princeton, NJ 08544
P.A. Morin
Affiliation:
Princeton University, Department of Electrical Engineering, Princeton, NJ 08544
V. Chu
Affiliation:
Princeton University, Department of Electrical Engineering, Princeton, NJ 08544
S. Wagner
Affiliation:
Princeton University, Department of Electrical Engineering, Princeton, NJ 08544
Get access

Abstract

It is a question as yet unresolved whether the density of light-induced defects in a-Si:H reaches a saturated value that cannot fundamentally be exceeded, or whether the defect density is in all conditions a steady-state value that reflects carrier concentration and temperature. In our experiments on a-Si:H we have observed defect saturation at low temperature and high light intensity; on the other hand, data exhibiting no saturation have also been published. To learn more about this question we have carried out saturation experiments on a-SiGe:H(F) alloys. These alloys have lower defect freeze-in temperatures than a-Si:H and, presumably, lower annealing energies. Therefore, saturation should be more difficult to achieve in the alloys than in a-Si:H.

We have studied saturation for a-SiGe:H(F) samples to temperatures above the onset of thermal annealing and have observed that its behavior is similar to that seen in a-Si:H.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Kolodzey, J., Aljishi, S., Smith, Z.E., Chu, V., Schwarz, R., and Wagner, S., Mat. Res. Soc. Symp. Proc. 70, 237 (1986).Google Scholar
2. Morin, P.A., Wang, N.W., and Wagner, S., Mat. Res. Soc. Symp. Proc, to be published.Google Scholar
3. Ohsawa, M., Hama, T., Akasaka, T., Sakai, H., Ishida, S., and Uchida, Y., J. Non-Cryst. Solids 97 & 98, 91 (1987).Google Scholar
4. Park, H.R., Liu, J.Z., and Wagner, S., Appl. Phys. Lett. 55, 2658 (1989).Google Scholar
5. Isomura, M., Park, H.R., Hata, N., Maruyama, A., Roca i Cabarrocas, P., Wagner, S., Abelson, J.R., and Finger, F., Proc. 5th International PVSEC, Kyoto, Japan, 71 (1990).Google Scholar
6. Redfield, D. and Bube, R., Phys. Rev. Lett. 65, 464 (1990).Google Scholar
7. Redfield, D., Appl. Phys. Lett. 52, 492 (1988).Google Scholar
8. Hata, N. and Wagner, S., AIP Conf. Proc. 234, 72 (1991).Google Scholar
9. Stutzmann, M., Philos. Mag. B 60, 531 (1989).Google Scholar
10. Winer, K., Phys. Rev. B 41, 12150 (1990).Google Scholar
11. Santos, P.V., Jackson, W.B., Street, R.A., AIP Conf. Proc. 234, 51 (1991).Google Scholar
12. Grimbergen, M., Benatar, L.E., Fahrenbruch, A., Lopez-Otero, A., Redfield, D., and Bube, R.H., AIP Conf. Proc. 234, 138 (1991).Google Scholar
13. Yang, L., Chen, L., and Catalano, A., AIP Conf. Proc. 234, 275 (1991).CrossRefGoogle Scholar
14. Isomura, M. and Wagner, S., AIP Conf. Proc. 234, 106 (1991).CrossRefGoogle Scholar
15. Vanecek, M., Kocka, J., Stuchlik, J., Kosicek, Z., Stika, O., and Triska, A., Solar Energy Materials 8, 411 (1983).Google Scholar
16. Smith, Z. E., Chu, V., Shepard, K., Aljishi, S., Slobodin, D., Kolodzey, J., Wagner, S., and Chu, T.L., Appl. Phys. Lett. 50, 1521 (1987).Google Scholar
17. Stutzmann, M., Jackson, W.B., and Tsai, C. C., Phys. Rev. B 32, 23 (1985).CrossRefGoogle Scholar
18. Jackson, W.B. and Stutzmann, M., Appl. Phys. Lett. 49, 957 (1986).Google Scholar
19. Gleskova, H., Morin, P.A., and Wagner, S., Materials Letters, to be published.Google Scholar