Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-25T17:45:31.687Z Has data issue: false hasContentIssue false

Defect population and electrical properties of Ar+-laser crystallized polycrystalline silicon thin films

Published online by Cambridge University Press:  14 March 2011

S. Christiansen
Affiliation:
Universität Erlangen-Nürnberg, Institut für Werkstoffwissenschaften-Mikrocharakterisierung, Cauerstr. 6, D-91058 Erlangen, Germany Universität Erlangen-Nürnberg, Institut für Werkstoffwissenschaften-Mikrocharakterisierung, Cauerstr. 6, D-91058 Erlangen, Germany, e-mail: [email protected]
M. Nerding
Affiliation:
Universität Erlangen-Nürnberg, Institut für Werkstoffwissenschaften-Mikrocharakterisierung, Cauerstr. 6, D-91058 Erlangen, Germany
C. Eder
Affiliation:
Universität Erlangen-Nürnberg, Institut für Werkstoffwissenschaften-Mikrocharakterisierung, Cauerstr. 6, D-91058 Erlangen, Germany
G. Andrae
Affiliation:
Institut für Physikalische Hochtechnologie, Winzerlaer Strasse 10, D-07745 Jena, Germany
F. Falk
Affiliation:
Institut für Physikalische Hochtechnologie, Winzerlaer Strasse 10, D-07745 Jena, Germany
J. Bergmann
Affiliation:
Institut für Physikalische Hochtechnologie, Winzerlaer Strasse 10, D-07745 Jena, Germany
M. Ose
Affiliation:
Institut für Physikalische Hochtechnologie, Winzerlaer Strasse 10, D-07745 Jena, Germany
H. P. Strunk
Affiliation:
Universität Erlangen-Nürnberg, Institut für Werkstoffwissenschaften-Mikrocharakterisierung, Cauerstr. 6, D-91058 Erlangen, Germany
Get access

Abstract

We crystallize amorphous silicon (a-Si) layers (thicknesses: ∼300nm and ∼1300nm for comparison) that are deposited on glass substrates (Corning 7059) by low pressure chemical vapor deposition using a continuous wave Ar+-laser. We scan the raw beam with a diameter of ∼60νm in single traces and traces with varying overlap (30-60%). With optimized process parameters (fluence, scan velocity, overlap) we achieve polycrystalline Si with grains as wide as 100νm. The grain boundary population is dominated by first and second order twin boundaries as analyzed by electron backscattering analysis in the scanning electron microscope and convergent beam electron diffraction in the transmission electron microscope. These twins are known not (or only marginally) to degrade the electrical properties of the material. In addition to twins, dislocations and twin lamellae occur at varying densities (depending on grain orientation and process parameters). The recombination activity of the defects is analyzed by EBIC and according to these measurements crystallization receipts are defined that yield the reduction of electrically detrimental defects.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Brotherton, S. D., McCulloch, D. J., Clegg, J. B., and Gowers, J. P., IEEE Trans. Electr. Dev. 40 (2), 407 (1993)Google Scholar
[2] Mei, P., Boyce, J. B., Hack, M., Lujan, R., Johnson, R. I., Anderson, G. B., Fork, D. K., and Ready, S. E., Appl. Phys. Lett. 64 (9), 1132 (1994)Google Scholar
[3] Im, J. S., Kim, H. J., and Thomson, M. O., Appl. Phys. Lett. 63, 1969 (1993); J. S. Im, M. A. Crowder, R. S. Sposili, J. P. Leonard, H. J. Kim, J. H. Yoon, V. V. Gupta, H. Jin Song, and H. S. Cho, phys. stat. sol. (a) 166, 603 (1998)Google Scholar
[4] Aichmayr, G., Toet, D., Mulato, M., Santos, P.V., Spangenberg, A., Christiansen, S., Albrecht, M., Strunk, H.P., J.Appl.Phys. 85, 4010 (1999); J. R. Köhler, R. Dassow, R. B. Bergmann, J. Krinke, H. P. Strunk, and J. H. Werner, Thin Solid Films 337, 129 (1999);Google Scholar
[5] Andrä, G., Bergmann, J., Falk, F., Ose, E., Stafast, H., phys.stat.sol. (a) 166, 629 (1998); G. Andrä, J. Bergmann, F. Falk, and E. Ose, Thin Solid Films 318 (1-2), 42-45 (1998)Google Scholar
[6] Evans, P.V., Smith, D.A., Thompson, C.V., Appl.Phys.Lett. 60, 439 (1992)Google Scholar
[7] Bonnel, M., Duhamel, N., Haji, L., Loisel, B., Stoemenos, J., Electron. Device Letters 14, 551 (1993)Google Scholar
[8] Sameshima, T., Hara, M., and Usui, S., Jpn. J. Appl. Phys., Part 1 28, 1789 (1989).Google Scholar
[9] Bergmann, R. B., Köhler, J., Dassow, R., Zaczek, C., and Werner, J. H., phys. stat. sol. (a) 166, 587 (1998)Google Scholar
[10] Werner, J. H., in Structure and Properties of Dislocations in Semiconductors, edited by Roberts, S. G. (Institute of Physics, Bristol, 1989), Vol. 104, pp. 63; J. H. Werner and N. E. Christensen, “Classification of Grain Boundary Activity in Semiconductors,” in Polycrystalline Semiconductors II, edited by J. H. Werner and H. P. Srunk (Springer Verlag, Berlin, 1991), Vol. 54 [11] S. Serikawa, IEEE Trans. Electron Devices 36, 1929 (1989)Google Scholar
[12] Cunningham, B., Strunk, H., and Ast, D. G., Appl. Phys. Lett. 40 (3), 237 (1982)Google Scholar
[13] Voigt, A., Blockgegossenes Silizium für die Photovoltaik: Struktur und elektrische Eigenschaften von Defekten (Vol. 2 Ser. Mikrostrukturelle Materialforschung, Strunk, H.P. ed., Verlag Lehrstuhl für Mikrocharakterisierung, Erlangen, Germany, 1996; ISBN3-932392-01-9)Google Scholar
[14] Bary, A., Thercey, B., Poullain, G., Chermant, J. L., and Nouet, G., Revue Phys. Appl. 22, 597 (1987)Google Scholar
[15] Liu, F., Mostoller, M., Milman, V., Chisholm, M.F., Kaplan, T., Phys.Rev. B 51, 17192 (1995); T.S. Fell, P.R. Wilshaw, M.D. DeCoteau, phys.stat.sol.(a), 138, 695 (1993)Google Scholar
[16] Watanabe, H., Miki, H., Sugai, S., Kawasaki, K., Kioka, T., Jpn.J.Appl.Phys. 33, 4491 (1994)Google Scholar
[17] Götz, G., Appl.Phys. A 40, 29 (1986)Google Scholar
[18] Jackson, K.A., Chalmers, B., Canadian Journal of Physics 34, 173 (1956)Google Scholar
[19] Bollmann, W., Crystal Defects and Crystalline Interfaces (Springer-Verlag, Berlin, 1970)Google Scholar
[20] Voigt, A., Orientation Analysis Software (University Erlangen,1996)Google Scholar
[21] Hull, D., Bacon, D.J., Introduction to dislocations, in: Series on Materials Science and Technology Vol. 37, 1984 Google Scholar
[22] A full description of this type of grain boundary would additionally require the identification of the contact planes in the adjacent grains [19].Google Scholar
[23] Higher order twins form by subsequent twinning operations or by reaction of lower order twins, e.g. a Σ=3 and a Σ=9 boundary form a Σ=27 boundary or a Σ=27 and a Σ=3 boundary form a Σ=81 boundary.Google Scholar
[24] Kohyama, M. and Yamamoto, R., Phys. Rev. B 49, 17102 (1994); M. Kohyama and R. Yamamoto, Phys. Rev. B 50, 8502 (1994)Google Scholar
[25] Thompson, M.O., Galvin, G.J., Mayer, J.W., Peercy, P.S., Poate, J.M., Jacobson, D.C., Cullis, A.G., Chew, N.G., Phys.Rev.Lett. 52, 2360 (1984); J.C.c. Fan, J.H. Zeiger, R.P. Gale, R.P. Chapman: Phys.Rev.Lett. 36, 158 (1980)Google Scholar
[26] Batstone, J. L., Phil. Mag. A 67, 51 (1993)Google Scholar
[27] Rocher, A., Fontaine, C., Dianteill, C., Inst. Phys. Conf. Ser. 60, 289 (1981)Google Scholar
[28] d'Aragona, F. Secco, J.Electrochemical Soc. 119, 948 (1972)Google Scholar
[29] Möller, H.J., Semiconductors for Solar Cells (Artech House Inc., Norwood MA, 1993 Google Scholar
[30] Frank, F.C., Read, W.T., in: Symp. Plastic Deformation of Crystalline Solids, Carnagie Inst. Technol., Pittsburgh 1950 (p.44)Google Scholar