Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-25T18:01:35.606Z Has data issue: false hasContentIssue false

Defect Microstructures and Deformation Mechanisms in Irradiated Austenitic Stainless Steels

Published online by Cambridge University Press:  15 February 2011

S. M. Bruemmer
Affiliation:
Pacific Northwest National Laboratory, Richland, Washington
J. I. Cole
Affiliation:
Pacific Northwest National Laboratory, Richland, Washington
R. D. Carter
Affiliation:
University of Michigan, Ann Arbor, Michigan
G. S. Was
Affiliation:
University of Michigan, Ann Arbor, Michigan
Get access

Abstract

Microstructural evolution and deformation behavior of austenitic stainless steels are evaluated for neutron, heavy-ion and proton irradiated materials. Radiation hardening in austenitic stainless steels is shown to result from the evolution of small interstitial dislocation loops during lightwater-reactor (LWR) irradiation. Available data on stainless steels irradiated under LWR conditions have been analyzed and microstructural characteristics assessed for the critical fluence range (0.5 to 10 dpa) where irradiation-assisted stress corrosion cracking susceptibility is observed. Heavy-ion and proton irradiations are used to produce similar defect microstructures enabling the investigation of hardening and deformation mechanisms. Scanning electron, atomic force and transmission electron microscopies are employed to examine tensile test strain rate and temperature effects on deformation characteristics. Dislocation loop microstructures are found to promote inhomogeneous planar deformation within the matrix and regularly spaced steps at the surface during plastic deformation. Twinning is the dominant deformation mechanism at rapid strain rates and at low temperatures, while dislocation channeling is favored at slower strain rates and at higher temperatures. Both mechanisms produce highly localized deformation and large surface slip steps. Channeling, in particular, is capable of creating extensive dislocation pileups and high stresses at internal grain boundaries which may promote intergranular cracking.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Andresen, P. L., Ford, F. P., Murphy, S. M. and Perks, J. M., 4th Int. Conf. Environmental Degradation of Materials in Nuclear Power Systems -Water Reactors, NACE, 1990, p. 1.Google Scholar
2. Jenssen, A. and Ljungberg, L. G., Proc. 7th Int. Conf. Environmental Degradation of Materials in Nuclear Power Systems - Water Reactors, NACE, 1995, p. 1043.Google Scholar
3. Scott, P., J. Nucl. Mat., 211 (1994) 101.Google Scholar
4. Garzarolli, F., Dewes, P., Hahn, R. and Nelson, J. L., Proc. 6rd Int. Conf. Environmental Degradation of Materials in Nuclear Power Systems - Water Reactors, TMS, 1993, p. 607.Google Scholar
5. Suzuki, S., et al., Int. Conf on Nuclear Engineering, Vol.5, ASME, 1996, p. 205.Google Scholar
6. Bruemmer, S. M., Arey, B. W. and Charlot, L. A., ASME, 1996 5, p. 657.Google Scholar
7. Andresen, P. L., Paper No. 40, Corrosion/91, NACE, 1991.Google Scholar
8. Maziasz, P. J., ORNL-6121, U.S. DOE Report, 1985.Google Scholar
9. Bloom, E., Martin, W., Stiegler, J. and Weir, J., J. Nucl. Mat., 141–143 (1967) 68.Google Scholar
10. Odette, G. R. and Lucas, G. E., J. Nucl. Nat., 179–181 (1979) 572.Google Scholar
11. Yoshida, N., J. Nucl. Mat., 205 (1993) 344.Google Scholar
12. Tanaka, M., Mazaisz, P., Hishinuma, A. and Hanada, S., J. Nucl. Mat., 141–143 (1986) 943.Google Scholar
13. Beeston, J.M. and Thomas, L. E., ASTM STP 782, ASTM, 1982, p. 71.Google Scholar
14. Suzuki, M., Fusion Materials Progress Report, DOE/ER-0313/2, U.S. DOE, 1987, p. 213.Google Scholar
15. Jacobs, A. J. and Dumbill, S.,7th Int. Sym. on Env. Degradation of Materials in Nucl. Power Systems - Water Reactors, ed. Mcllree, A. R. and Bruemmer, S. M., TMS, 1995, p. 1021.Google Scholar
16. Bruemmer, S. M. and Simonen, E. P., Corrosion J., 50–12 (1994) 940.Google Scholar
17. Lucas, G. E., J. Nucl. Mat., 206 (1993) 287.Google Scholar
18. Wechsler, M. S., The Inhomogeneity of Plastic Deformation, ed. Reed-Hill, R. E., American Society for Metals, 1973, Chapter 2, p. 19.Google Scholar
19. Gorynin, I., Kozhevnikov, O., Nikishina, K., Parshin, A. and Sedov, V., Fiizika Radiatsionnykh i Povrezhdenii Radiatsionnoe Materialovedenie, 3 (26), 1983, p. 45.Google Scholar
20. Suzuki, M., et al., Phil. Mag. A, 65(6), 1992, 1309.Google Scholar
21. Brimhall, J. L. and Mastel, B., App. Phys. Lett., 9, 1966, 127.Google Scholar
22. Cole, J.I., PhD Thesis, Washington State University, 1996.Google Scholar
23. Cole, J. I., Biimhall, J. L., Vetrano, J. S. and Bruemmer, S. M., PhD Thesis, Washington State University, 1996 17, p. 817.Google Scholar
24. Cole, J. I. and Bruemmer, S. M., J. Nucl. Mat., 225 (1995) 53.Google Scholar
25. Song, S. G., Cole, J. I. and Bruemmer, S. M., accepted for publication in Acta Metall., 1996.Google Scholar
26. Bruemmer, S. M., Cole, J. I., Brimhall, J. L., Carter, R. D. and Was, G. S., accepted for publication in Acta Metall. 5, p. 537.Google Scholar
27. Bruemmer, S. M., Cole, J. I. and Simonen, E. P., Corrosion 97, NACE, Paper 103, in press.Google Scholar