Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-24T13:37:37.108Z Has data issue: false hasContentIssue false

Defect Mediated and Resonant Optical Excitation of Er3+ Ions in Silicon-rich Silicon Oxide

Published online by Cambridge University Press:  10 February 2011

D. Kuritsyn
Affiliation:
Institute of Physics, Polish Academy of Sciences, Al. Lotników 32/46, 02-668 Warsaw, Poland
A. Kozanecki*
Affiliation:
Institute of Physics, Polish Academy of Sciences, Al. Lotników 32/46, 02-668 Warsaw, Poland
H. Przybylińska
Affiliation:
Institute of Physics, Polish Academy of Sciences, Al. Lotników 32/46, 02-668 Warsaw, Poland
W. Jantsch
Affiliation:
Institut für Halbleiter- und Festkörperphysik, Johannes Kepler Universität, Linz A-4040, Austria. PACS No. 61.72.Ww, 78.55.Hx
*
a)Corresponding author; electronic mail: [email protected]
Get access

Abstract

We study sensitization of the 4I13/24I15/2 Er3+ luminescence at 1.54 μm in silicon-rich silicon oxide (SRSO) in the whole range of blue-green pump wavelengths. We show that, in general, defects due to excess Si in silica act as luminescence sensitizers. They cause a wide excitation band with a long wave length limit of 600 nm. For monochromatic excitation the maximum luminescence yield is still smaller than for resonant excitation within the 4f shell of Er without additional Si. The large enhancement of the excitation cross section for electrical excitation reported in the literature is plausible, however, as the wide excitation band makes good use of the wide energy distribution of hot carriers. We suggest that the dominant factors, which limit the excitation efficiency of Er3+, are distance dependence of the transfer rate and little spectral overlap of the interacting states.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Coffa, S.,Franzo, G., Priolo, F., Mat. Res. Soc. Bulletin, 23, 2325 (1998).Google Scholar
2. Favennec, P. N., l'Haridon, H., Moutonnet, D., Salvi, M., Gauneau, M., Mater. Res. Soc. Symp. Proc., 301 (1993) p. 181.Google Scholar
3. Lombardo, S., Campisano, S. U., Hoven, G. N. van den, Cacciato, A., and Polman, A., Appl. Phys. Lett. 63, 1942 (1993).Google Scholar
4. Hoven, G. van den, Shin, J. H., Polman, A., Lombardo, S., and Campisano, S. U., J. Appl. Phys. 78, 2642 (1995).Google Scholar
5. Kimura, T., Yokoi, A., Horiguchi, H., Saito, R., Ikoma, T., and Sato, A., Appl. Phys. Lett.75, 989 (1999).Google Scholar
6. Fujii, M., Yoshida, M., Kanzawa, Y., Hayashi, S., and Yamamoto, K., Appl. Phys. Lett. 71, 1198 (1997).Google Scholar
7. Chryssou, C. E., Kenyon, A. J., Iwayama, T. S., Pitt, C. W., and Hole, D. E., Appl. Phys. Lett 75, 2011 (1999).Google Scholar
8. Franzo, G., Pacifici, D., Vinciguera, V., Priolo, F., and Iacona, F., Appl. Phys. Lett, 76, 2167 (2000).Google Scholar
9. Kik, P. G., and Polman, A., J. Appl. Phys., 88, 1992 (2000).Google Scholar
10. Kozanecki, A., Sealy, B. J., Homewood, K., Ledain, S., Jantsch, W., Kuritsyn, D., Mat. Sci &Eng. B 81, 23 (2001).Google Scholar
11. Franzo, G., Vinciguera, V., and Priolo, F., Appl. Phys. A 69, 3 (1999).Google Scholar
12. Palmetshofer, L., Gritsch, M., Hobler, G., Mat. Sci &Eng. B 81, 83 (2001).Google Scholar
13. Kovalev, D., Diener, J., Heckler, H., Polisski, G., Künzner, N. and Koch, F., Phys. Rev. B61, 4485 (2000).Google Scholar
14. Watanabe, K., Fujii, M. and Hayashi, S., J. Appl. Phys. 90, 4761 (2001).Google Scholar
15. Elliman, R. G., Lederer, M. J. and Luther-Davies, B., Appl. Phys. Lett. 80, 1325 (2002).Google Scholar
16. Kik, P. G., Brongersma, M. L., and Polman, A., Appl. Phys. Lett. 76, 2325 (2000).Google Scholar
17. Seo, S Y., and Shin, J., Appl. Phys. Lett. 78, 2709 (2000).Google Scholar
18. Polman, A., J. Appl. Phys. 82, 1 (1997).Google Scholar
19. Przybyliśka, H., Jantsch, W., Suprun-Belevitch, Yu., Stepikhova, M., Palmetshofer, L., Hendorfer, G., Kozanecki, A., Wilson, R. J., and Sealy, B. J., Phys. Rev. B 54, 2532 (1996).Google Scholar
20. Gapontsev, V. P., Matitsin, S. M., Isineev, A. A., and Kravchenko, V. B., Opt. Laser Technol.14, 189 (1982).Google Scholar
21. Kenyon, J., Chryssou, C. E., Pitt, W., Shimizu-Iwayama, T., Hole, D. E., Sharma, N. and Humphreys, C. J., J. Appl. Phys. 91, 367 (2002).Google Scholar
22 Dexter, D. L., J. Chem. Phys. 21, 836 (1953).Google Scholar
23. Iacona, F., Pacifici, D., Irrera, A., Miritello, M., Franzo, G., Priolo, F., Sanfilippo, D., DiStefano, G., and Fallica, P.G., Appl. Phys. Lett. 81, 3242 (2002)Google Scholar