Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-27T18:43:05.521Z Has data issue: false hasContentIssue false

Defect Identification in High-Purity Semiconductors

Published online by Cambridge University Press:  28 February 2011

Eugene E. Haller*
Affiliation:
University of California and Lawrence Berkeley Laboratory, Berkeley, CA 94720
Get access

Abstract

The elemental semiconductors silicon and germanium can be purified to electrically active impurity concentrations as low as ∼1010cm−3. Highly sensitive, energy dispersive analytical techniques have been developed to identify and measure the concentration of the residual elemental impurities. The application of these techniques to very pure materials has also resulted in the discovery of a large number of new levels which are due to impurity/defect complexes. Photothermal ionization spectroscopy using uniaxial stress or a magnetic field, electron paramagnetic resonance, and doping experiments using stable and radioactive elements have been used in combination to identify the composition and the structure of some of the new centers.

Type
Research Article
Copyright
Copyright © Materials Research Society 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Haller, E.E. and Goulding, F.S., Handbook on Semiconductors, Vol. 4, edited by Hilsum, C. (North-Holland, 1981) p. 799.Google Scholar
[2] Goulding, F.S. and Pehl, R.H., Nuclear Spectroscopy and Reactions, Part A (Academic Press, 1974) p. 289.CrossRefGoogle Scholar
[3] Hoffmann, A., Reuschel, K. and Rupprecht, H., J. phys. Chem. Solids 11, 284 (1959).CrossRefGoogle Scholar
[4] Schnoeller, M.S., IEEE Trans. Electr. Dev. ED–21, 313 (1974).CrossRefGoogle Scholar
[5] Bratt, P.R., Semiconductors and Semimetals, edited by Willardson, R.K. and Beer, A.C. (Academic Press, 1977) p. 67.Google Scholar
[6] Haegel, N.M., Haller, E.E. and Luke, P.N., Intl. J. Infrared and Millimeter Waves 4, No. 6, 933 (1983).Google Scholar
[7] Haller, E.E., Hansen, W.L. and Goulding, F.S., Adv. Phys. 30, No. 1, 93 (1981).Google Scholar
[8] Baldereschi, A. and Lipari, N.O., Phys. Rev. B 8, 2697 (1973); and Phys. Rev. B 9, 1525 (1974).Google Scholar
[9] Lifshits, T.M. and Nad, F. Ya., Dokl. Akad. Nauk. SSSR 162, 801 (1965).Google Scholar
[10] Kogan, Sh.M. and Lifshits, T.M., Phys. Status Solidi A 39, 11 (1977).Google Scholar
[11] Bell, R.J., Introductory Fourier Transform Spectroscopy (Academic Press, 1972).Google Scholar
[12] Steeg, M.J.H. van de, Jongbloets, H.W.H.M. and Wyder, P., Phys. Rev. B 30, 3374 (1984).Google Scholar
[13] Martin, J. and Haas, E., Solid State Electr. 11, 993 (1968); also E. Haas, W. Brandt and J. Martin, Solid State Electr. 12, 915 (1969).Google Scholar
[14] Haller, E.E., Hansen, W.L., Luke, P.N., McMurray, R. and Jarrett, B., IEEE Trans. Nucl. Sci. NS–29, No. 1, 745 (1982).CrossRefGoogle Scholar
[15] Hansen, W.L., Haller, E.E. and Luke, P.N., IEEE Trans. Nucl. Sci. NS–29, No. 1, 738 (1982).Google Scholar
[16] Fermi, E., Nuovo Cimento 11, 1 (1934); also E. Fermi, Z. Phys. 88, 161 (1934).Google Scholar
[17] Sonntag, C., Rebel, H., Ribbat, B., Thio, S.K. and Gramm, W.R., Lett. Nuovo Cimento IV, 717 (1970).Google Scholar
[18] Hall, R.N., Inst. Phys. Confr. Ser. 23, 190 (1975).Google Scholar
[19] Hall, R.N., IEEE Trans. Nucl. Sci. NS–21, 260 (1974).Google Scholar
[20] Haller, E.E., Joos, B. and Falicov, L.M., Phys. Rev. B 21, 4729 (1980).Google Scholar
[21] Haller, E.E. and McMurray, R.E. Jr, Physica 116B+C, 349 (1983).Google Scholar
[22] McMurray, R.E. Jr, Ph.D. Thesis, Univ. Calif., Berkeley, 1984, unpublished.Google Scholar
[23] McMurray, R.E. Jr, Haegel, N.M., Kahn, J.M. and Haller, E.E., Solid State Commun. 53, 1137 (1985).CrossRefGoogle Scholar
[24] Haller, E.E. and Hubbard, G.S., Izv. Akad. Nauk. SSSR Phys. Ser. 42, No. 6, 1166 (1978); English version Lawrence Berkeley Laboratory Report LBL-6432.Google Scholar
[25] Haller, E.E., IEEE Trans. Nucl. Sci. NS–25, No. 1, 418 (1978).Google Scholar
[26] Kahn, J., private communication.Google Scholar
[27] Haller, E.E., Hubbard, G.S., Hansen, W.L. and Seeger, A., Inst. Phys. Confr. Ser. 31, 309 (1977).Google Scholar
[28] Joos, B., Haller, E.E. and Falicov, L.M., Phys. Rev. B 22, 832 (1980).Google Scholar
[29] Haller, E.E., Phys. Rev. Lett. 40, 584 (1978).Google Scholar
[30] Haller, E.E. and Falicov, L.M., Phys. Rev. Lett. 4, 1192 (1978).Google Scholar
[31] Haller, E.E. and Falicov, L.M., Inst. Phys. Confr. Ser. 43, 1039 (1979).Google Scholar
[32] Falicov, L.M. and Haller, E.E., Solid State Commun. 53, 1121 (1985).Google Scholar
[33] Pankove, J.I., Wance, R.O. and Berkeyheiser, J.E., Appl. Phys. Lett. 45, 1100 (1984).Google Scholar
[34] Pearton, S.J., Hansen, W.L., Haller, E.E. and Kahn, J.M., J. Appl. Phys. 55, 1221 (1984).Google Scholar
[35] Pearton, S.J., Haller, E.E. and Elliot, A.G., Electronics Lett. 19, 1052 (1983).CrossRefGoogle Scholar
[36] Faulkner, R.A., Phys. Rev. 96, 1488 (1969).Google Scholar