Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-09T19:52:09.121Z Has data issue: false hasContentIssue false

Defect Generation and Diffusion Mechanisms in Al and Al-Cu

Published online by Cambridge University Press:  10 February 2011

C. - L. Liu
Affiliation:
Motorola, Inc.Predictive Engineering Lab Los Alamos, New Mexico
X.-Y. Liu
Affiliation:
Motorola, Inc.Predictive Engineering Lab Los Alamos, New Mexico
L. J. Borucki
Affiliation:
Motorola, Inc.Predictive Engineering Lab Mesa, Arizona
Get access

Abstract

We describe a newly-developed defect generation mechanism, namely the grain boundary Frenkel pair (GBFP) model, and corresponding diffusion mechanisms during electromigration developed using atomic molecular statics (MS), Monte Carlo (MC), and molecular dynamics (MD) simulation techniques in Al and Al-Cu. We contend that large numbers of interstitials and vacancies exist at grain boundaries and both contribute to mass transport. Cu preferentially segregates to the interstitial sites at grain boundaries via a Frenkel pair generation process and reduces the overall grain boundary diffusivity due to the strong binding in the Al-Cu dimer. Predictions from our models are in excellent agreement with available experimental data and observations.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Ames, I., d'Heurle, F., and Horstmann, R., IBM J. Res. Develop., 14, 461(1970).Google Scholar
[2] Morris, J.W. Jr., Kim, C.-U., and Kang, S.H., Journal of the Minerals, Metals & Materials Spciety (JOM), v.48 (#5), 43(1996);Google Scholar
Theiss, S.K. and Prybyla, J.A., Mat. Res. Soc. Symp. Proc. 403, 651(1996);Google Scholar
Knowlton, B.D., Frank, R.I., and Thompson, C.V., Mat. Res. Soc. Symp. Proc. 391, 361(1995).Google Scholar
[3] Rosenberg, R., Journal of vacuum Science and Technology, v.9 (#1), 263(1970);Google Scholar
Nogami, T. and Nemoto, T., Proceeding of stress-induced phenomena in metallization, 3rd international workshop, p. 198(1995).Google Scholar
[4] Kwok, T., Ho, P. S., Yip, S., Balluffi, R. W., Bristowe, P. D., and Brokman, A., Phys. Rev. Lett. 47, 1148(1981).Google Scholar
[5] Balluffi, R. W., in: Diffusion in Crystalline Solids, eds. Murch, G. E. and Nowick, A. S., p.319, 1984, Academic Press Inc.Google Scholar
[6] Liu, C.-L., Borucki, L. J., and Liu, X.-Y., in preparation.Google Scholar
[7] Daw, M. S. and Baskes, M. I., Phys. Rev. Lett. 50, 1285(1993).Google Scholar
[8] Foiles, S. M., Baskes, M. I., and Daw, M. S., Phys. Rev. B 33, 7983(1986).Google Scholar
[9] Kresse, G. and Furthmuller, J., Phys. Rev. B 41, 11169(1996).Google Scholar
[10] Vanderbilt, D., Phys. Rev. B 41, 7892(1992).10.1103/PhysRevB.41.7892Google Scholar
[11] Erocolessi, F. and Adams, J. B., Europhys. Lett. 26, 583(1994).10.1209/0295-5075/26/8/005Google Scholar
[12] Daw, M. S., Foiles, S. M., and Baskes, M. I., Materials Science Reports, vol.9, 251(1993) and references therein.10.1016/0920-2307(93)90001-UGoogle Scholar
[13] Huntington, H.B., Grone, A.R., J. Phys. Chem. Solids, Vol. 20, Nos. 1/2, pp. 7687.Google Scholar
[14] Kawasaki, H. and Hu, C.K., Digest of Technical papers 1996 IEEEE symposium on VLSI technology, Hawaii, June 1996, p.192.10.1109/VLSIT.1996.507848Google Scholar
[15] Liu, C.-L. and Plimpton, S. J., Communications, J. Mater. Res. 10, 1589(1995).Google Scholar
[16] Hu, C.K., Rosenberg, R., Tu, K.N., Proceeding of stress-induced phenomena in metallization, 2nd international workshop, p. 195(1993).Google Scholar
[17] Huber, K.P. and Herzberg, G., Molecular Spectra and Molecular Structure, Vol. IV, Constants of Diatomic Molecules, Van Nostrand Reinhold, New York, 1979.Google Scholar