Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-29T07:25:27.004Z Has data issue: false hasContentIssue false

Defect Formation During Zn Diffusion into GaAs

Published online by Cambridge University Press:  25 February 2011

Martina Luysberg
Affiliation:
Institut für Festkörperforschung, KFA Jülich, D-5170 Jülich, F.R. Germany
W. Jäger
Affiliation:
Institut für Festkörperforschung, KFA Jülich, D-5170 Jülich, F.R. Germany
K. Urban
Affiliation:
Institut für Festkörperforschung, KFA Jülich, D-5170 Jülich, F.R. Germany
M. Perret
Affiliation:
Institut für Metallforschung, Universität Münster, F.R. Germany
N.A. Stolwijk
Affiliation:
Institut für Metallforschung, Universität Münster, F.R. Germany
H. Mehrer
Affiliation:
Institut für Metallforschung, Universität Münster, F.R. Germany
Get access

Abstract

The microstructure induced by the Zn diffusion at 1170 K into doped and undoped semi-insulating GaAs single crystals was characterized for various diffusion times t < 1740 min by analytical electron microscopy. The results were compared with Zn concentration profiles obtained by spreading resistance measurements (SRM) on the same samples. At the diffusion front the formation of prismatic interstitial dislocation loops, dislocation networks, and of cavities partly filled with Ga was observed. Closer to the surface facetted voids and, for the undoped samples, vacancy-type dislocation loops formed. The near surface region of highest Zn-concentration showed a high density of Zn-rich precipitates. A model is presented which accounts .for these observations. It is based on fast interstitial Zn diffusion and the kick-out mechanism for interstitial-substituional exchange.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Winteler, H.R., Helv. Phys. Acta 44, 451 (1971)Google Scholar
2 Ting, C.H. and Pearson, G.L., J. Electrochem. Soc. 118, 1455 (1971)Google Scholar
3 Casey, H.C., in Atomic Diffusion in Semiconductors edited by Shaw, (Plenum Press, 1973)Google Scholar
4 Stolwijk, N.A., Perret, M. and Mehrer, H., Defect and Diffusion Forum 59, 79 (1988)Google Scholar
5 Tuck, B., Atomic Diffusion in III -. V Semiconductors (Adam Hilger IOP Publishing Ltd, 1988)Google Scholar
6 Frank, F.C., Turnbull, D., Phys. Rev. 104, 617 (1956)Google Scholar
7 Longini, P.L., Solid State Electronics 5, 127 (1962)Google Scholar
8 Gösele, U. and Morehead, F., J. Appl. Phys. 52, 4617 (1981)Google Scholar
9 Tan, T.Y. and Gösele, U., Mat. Sci. En. B1, 47 (1988)Google Scholar
10 Ball, R.K., Hutchinson, P.W. and Dobson, P.S., Phil. Mag 43, 1299 (1981)Google Scholar
11 Hutchinson, P.W. and Ball, R.K., J. Mat. Sci. 17, 406 (1982)Google Scholar
12 Föll, H. and Wilkens, M., phys. stat. sol (a) 31, 519 (1975)Google Scholar
13 Petroff, P.M. and Kimerling, L.C., Appl. Phys. Lett. 29, 461 (1976)Google Scholar
14 Baraff, G.A. and Schlüter, M., Phys. Rev. Lett. 55, 1327 (1985)Google Scholar
15 Marioton, B.P.R., Tan, T.Y. and Gösele, U., Appl. Phys Lett., 54, 849 (1989)Google Scholar