Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-27T02:23:11.006Z Has data issue: false hasContentIssue false

Defect Evolution in Ion Implanted Si: from Point to Extended Defects

Published online by Cambridge University Press:  10 February 2011

Sebania Libertino
Affiliation:
INFM and Dipartimento di Fisica, Università di Catania, C.so Italia, 57, I-95130 Catania, Italy.
Janet L. Benton
Affiliation:
Bell Labs, Lucent Technologies, 700 Mountain Avenue, Murray Hill, NJ 07974.
Salvatore Coffa
Affiliation:
CNR-IMETEM, Stradale Primosole, 50, I-95122, Catania, Italy
Dave J. Eaglesham
Affiliation:
Bell Labs, Lucent Technologies, 700 Mountain Avenue, Murray Hill, NJ 07974.
Get access

Abstract

Several recent experiments assessing the role of impurities (C, O), dopants (P, B) and clustering on defect evolution in ion implanted Si are reviewed. Deep level transient spectroscopy measurements were used to analyze the defect structure in a wide range of ion implantation fluences (1×108–5×1013 cm−2) and annealing temperatures (100–800 °C). By using substrates with a different impurity content and comparing ion implanted and electron irradiated Si samples, many interesting features of defect evolution in Si have been elucidated. It is found that only a small percentage, 4–16 % depending on ion mass, of the Frenkel pairs generated by the beam escape direct recombination and is stored into an equal number of room temperature stable vacancy- (V-) and interstitial-type (I-) defect complexes. Identical defect structures and annealing behavior have been measured in ion implanted (1.2 MeV Si, 1×108–1×1010/cm2) and electron irradiated (9.2 MeV to fluences between 1 and 3×1015/cm2) samples in spite of the fact that denser collision cascades are produced by the ions. The O and C content of the substrate plays a major role in determining the point defect migration, the room temperature stable defect structures and their annealing behavior. Annealing at temperatures up to 300 °C produces a concomitant reduction of the I- and V-type defect complexes concentration, demonstrating that defect annihilation occurs preferentially in the bulk. At temperatures above 300 °C, when all V-type complexes have been annealed out, ion implanted samples present a residual I-type damage, storing 2–3 I per implanted ion. This unbalance is not observed in electron irradiated samples and it is a direct consequence of the extra implanted ion. The simple point defect structures produced at low ion fluence (1×108–1×1011 /cm2) anneal at ∼ 550 °C. At higher fluences (∼ 1012–1013/cm2) and for annealing temperatures above 500 °C the deep level spectrum is dominated by two signatures at Ev+0.33 eV and at Ev+0.52 eV that we have associated to Si interstitial clusters. Impurities (C, O and B) play a role in determining nucleation kinetics of these defects, but they are not their main constituents. The dissolution temperature of these clusters indicates that they might store the interstitials that drive transient enhanced diffusion phenomena occurring in the absence of extended defects. Finally, at higher implantation fluence, a signature of extended defects is observed and associated to the presence of {311} defects detected by transmission electron microscopy analyses.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Cowern, N. E. B., Janssen, K. T. F., Jos, H. F. F., J. Appl. Phys. 68, 6191 (1990).Google Scholar
2. Jones, K. S., Prussin, S. and Weber, E. R., Appl. Phys. A 45, 1, (1988).Google Scholar
3. Kimerling, L. C., in Radiation Effects in Semiconductors, ed. by Urli, N. B. and Corbett, J. M. (Inst. Of Phys. Conf. Ser. 31, London 1977), p. 221.Google Scholar
4. Asom, M. T., Benton, J. L., Sauer, R. and Kimerling, L. C., Appl. Phys. Lett. 51, 256 (1987).Google Scholar
5. Benton, J. L., Asom, M. T., Sauer, R. and Kimerling, L. C., Mat. Res. Soc. Symp. Proc. 104, 85 (1988).Google Scholar
6. Watkins, G. D. and Corbett, J. W., Phys. Rev. 121, 1001 (1961).Google Scholar
7. Libertino, S., Benton, J. L., Jacobson, D. C., Eaglesham, D. J., Poate, J. M., Coffa, S., Fuochi, P. G., and Lavalle, M., Appl. Phys. Lett. 70 (22), 3002 (1997).Google Scholar
8. Svensson, B. G., Jagadish, C., Hallèn, A. and Lalita, J., Nucl. Instr. Meth. B106, 183 (1995).Google Scholar
9. Lalita, J., Keskitalo, N., Hallèn, A., Jagadish, C. and Svensson, B. G., Nucl. Instr. Meth. 120, 27, (1996).Google Scholar
10. Svensson, B. G., Mohadjeri, B., Hallèn, A., Svensson, J. H. and Corbett, J. W., Phys. Rev. B 43, 2292 (1991).Google Scholar
11. Giles, M., J. Electr. Soc. 138, 1160 (1991).Google Scholar
12. Seshan, K. and Washburn, J., Rad. Eff, 37, 147, (1978).Google Scholar
13. Stolk, P. A., Gossmann, H.-J., Eaglesham, D. J., Jacobson, D. C., Rafferty, C. S., Gilmer, G. H., Jaraiz, M., Poate, J. M. and Haynes, T. E., J. Appl. Phys. 81, 6031, (1997).Google Scholar
14. Cowern, N. E. B., van de Walle, G. F. A., Zalm, P. C. and Vandenhoudt, D. W. E., Appl. Phys. Lett. 65, 2981, (1994).Google Scholar
15. Jaraiz, M., Gilmer, G. H., Poate, J. M., de la Rubia, T. D., Appl. Phys. Lett. 68, 409 (1996).Google Scholar
16. Benton, J. L., Libertino, S., Coffa, S. and Eaglesham, D. J., Mat. Res. Soc. Symp. Proc. 469, 193 (1997).Google Scholar
17. Watkins, G. D., Phys. Rev. B 12, 5824 (1975).Google Scholar
18. Londos, C. A. and Grammatikakis, J., in Phys. Stat. Sol. (a) 109, 421, 1988.Google Scholar
19. Drevinski, P. J., Caefer, C. E., Tobin, S. P., Mikkelsen, J. C. Jr., and Kimerling, L. C., in Mat. Res. Soc. Symp. Proc., Vol.104, ed. by Stavola, M., Pearton, S. J., and Davies, G. (Materials Research Society, Pittsburgh, PA, 1988), p. 167.Google Scholar
20. Drevinski, P. J., Cafaer, C. E., Kimerling, L. C. and Benton, J. L., Proceeding of the International Conference on the Science and Technology of Defect Control in Semiconductors, ed. by Sumino, K. (Elsevier Science, North Holland, Amsterdam, 1990) p. 341.Google Scholar
21. Drevinski, P. J. and De Angelis, H. M., Thirteenth International Conference on Defects in Semiconductors, ed. by Kimerling, L. C. and Parsey, J. M., (The Metallurgical Society of AIME, Warrendale, PA, 1985), p. 807.Google Scholar
22. Coffa, S., Privitera, V., Priolo, F., Libertino, S. and Mannino, G., J. Appl. Phys. 81, 1639 (1997).Google Scholar
23. Libertino, S., Coffa, S., Privitera, V. and Priolo, F., Mat. Res. Soc. Symp. Proc. 438, 65 (1997).Google Scholar
24. Biersack, J. P. and Haggmark, L. G., Nucl. Instr. Meth. 174, 257 (1980).Google Scholar
25. Kimerling, L. C., Inst. Phys. Conf. Ser. 31, 221 (1977).Google Scholar
26. Libertino, S., Benton, J. L., Jacobson, D. C., Eaglesham, D. J., Poate, J. M., Coffa, S., Fuochi, P. G. and Lavalle, M., Appl. Phys. Lett. 71, 389 (1997).Google Scholar
27. Benton, J. L., Libertino, S., Kringhøi, P., Eaglesham, D. J., Poate, J. M. and Coffa, S., J. Appl. Phys. 82, 120 (1997).Google Scholar
28. Libertino, S., Benton, J. L., Coffa, S., Jacobson, D. C., Eaglesham, D. J., Poate, J. M., Lavalle, M. and Fuochi, P. G., Mat. Res. Soc. Symp. Proc. 469, 187 (1997).Google Scholar
29. Omling, P., Samuelson, L. and Grimmeiss, H. G., J. Appl. Phys. 54, 5117, (1983).Google Scholar
30. Ayres, J. R., Brotherton, S. D., J. Appl. Phys. 71, 2702, (1992).Google Scholar
31. Robinson, M. T. and Torrens, J. M, Phys. Rev. B 9, 5008, (1974).Google Scholar