Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-27T01:53:11.384Z Has data issue: false hasContentIssue false

Defect Dynamics and the Properties of Amorphous Silicon – a New Perspective

Published online by Cambridge University Press:  26 February 2011

Sokrates T. Pantelides*
Affiliation:
IBM T. J. Watson Research Center, Yorktown Heights, NY 10598
Get access

Extract

In the last twenty years, the dominant paramagnetic defect in a-Si (the D center) was believed to be threefold-coordinated Si (dangling bond) which is not mobile. Many observations, however, have not been explained in a satisfactory way. This paper summarizes recent contributions of the present author which offer a novel and systematic description of the properties of a-Si. It is shown that overcoordinazion is an essential concept and that fivefold- and threefold-coordinated Si are the primitive conjugate intrinsic defects. Overcoordination is the key to defect migration and thus to the realization of reactions between intrinsic defects, hydrogen, and impurities. Most properties of a-Si are a consequence of a small set of reactions. The available data favor the identification of the D center as fivefold-coordinated Si (floating bond). Dangling bonds are nonmagnetic and their signature is a photoluminescence peak at ∼0.9 eV.

Type
Research Article
Copyright
Copyright © Materials Research Society 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. See review articles in The Physics of Hydrogenated Amorphous Silicon, edited by Joannopoulos, J. D. and Lucovsky, G., (Springer-Verlag, Berlin, 1984).Google Scholar
2. See review articles in Hydrogenated Amorphous Silicon, edited by Pankove, J. I., Semiconductors and Semimetals Vol.21 (Academic, New York, 1984).Google Scholar
3. Street, R. A. and Biegelsen, D. K., in Ref. 1, p. 195; P. C. Taylor, Ref. 2, part C, p. 99.Google Scholar
4. Thomas, P. A., Brodsky, M. H., Kaplan, D., and Lepine, D., Phys. Rev. B 18, 3059 (1978).Google Scholar
5. Biegelsen, D. K., Street, R. A., Tsai, C. C., and Knights, J. C., Phys. Rev. B 20,4839 (1979); M. Kumeda and T. Shimizu, Jap. J. Appl. Phys. 19, L197 (1980).Google Scholar
6. Carlson, D. E. and Magee, C. W., Appl. Phys. Lett. 33, 81 (1978).Google Scholar
7. Zellama, K., Germain, P., Squelard, S., Bourdon, B., Fontenille, J., and Danielou, R., Phys. Rev. B 23, 6648 (1981).Google Scholar
8. Staebler, D. L. and Wronski, C. R., J. Appl. Phys. 51, 3262 (1980).Google Scholar
9. Dersch, H., Stuke, J., and Beichler, J., Appl. Phys. Lett. 38, 456 (1981).Google Scholar
10. Street, R., Biegelsen, D. and Stuke, J., Phil. Mag. B 40,451 (1979).Google Scholar
11. Schade, H. J. and Pankove, J. I., J. de Phys. Coll. C 4, 327 (1981).Google Scholar
12. Stutzmann, M., Jackson, W. B., and Tsai, C. C., Phys. Rev. B 32, 23 (1985).Google Scholar
13. Mott, N. F., Adv. Phys. 16, 49 (1967).Google Scholar
14. Spear, W. E. and LeComber, P. G., Solid State Commun. 17, 1193 (1975).Google Scholar
15. Street, R. A., Phys. Rev. Lett. 49, 1187 (1982); R. Street et al. Phil. Mag. B52, 235 (1985).Google Scholar
16. Stutzmann, M. and Street, R. A., Phys. Rev. Lett. 54 1836 (1985).Google Scholar
17. Smith, Z E. and Wagner, S., Phys. Rev. B 32, 5510 (1985); Z E. Smith et al., Phys. Rev. Lett. 57, 2450 (1986).Google Scholar
18. Street, R. A., Kakalios, J. and Hayes, T. M., Phys. Rev. B 34, 3030 (1986); R. A. Street et al., Phys. Rev. B 35, 1316 (1987).Google Scholar
19. Bar-Yam, Y., Adler, D. and Joannopoulos, J. D., Phys. Rev. Lett. 57, 467 (1986).Google Scholar
20. Pantelides, S. T., Phys. Rev. Lett. 57, 2979 (1986).Google Scholar
21. Pantelides, S. T., Phys. Rev. Lett. 58, 1344 (1987).Google Scholar
22. Pantelides, S. T., submitted to Phys. Rev. B, Rapid Commun.Google Scholar
23. Pantelides, S. T., submitted to Phys. Rev. Lett.Google Scholar
24. Car, R., Kelly, P. J., Oshiyama, A., and Pantelides, S. T., Phys. Rev. Lett. 52, 1814 (1984), and 54, 360 (1985); Y. Bar-Yam and J. D. Joannopoulos, J. Electron. Mater. 14, 261 (1985).Google Scholar
25. Dannefaer, S., Mascher, P., and Kerr, D., Phys. Rev. Lett. 56, 2195 (1986).Google Scholar
26. Biegelsen, D. K. and Stutzmann, M., Phys. Rev. B 33, 3006 (1986).Google Scholar
27. Stathis, J. H. and Pantelides, S. T., to be published.Google Scholar
28. Bar-Yam, Y. and Joannopoulos, J. D., Phys. Rev. Lett. 56, 2203 (1986).Google Scholar
29. Fedders, P. A. and Carlsson, A. E., Phys. Rev. Lett. 58, 1156 (1987).Google Scholar
30. Goesele, U., Frank, W. and Seeger, A., Appl. Phys. 23, 361 (1980).Google Scholar
31. Street, R. A., unpublished.Google Scholar
32. Fritzsche, H., Tanielian, M., Tsai, C. C., and Gaczi, P. J., J. Appl. Phys. 50, 3366 (1979).Google Scholar
33. Kaplan, D., Sol, N., Velasco, G., and Thomas, P. A. Appl. Phys. Lett. 33, 440 (1978).Google Scholar
34. See Pantelides, S. T., in Deep Centers in Semiconductors, edited by Pantelides, S. T. (Gordon and Breach, New York, 1986), p. 1.Google Scholar
35. Voget-Grote, U., Kuemmerle, W., Fischer, R., and Stuke, J., Phil. Mag. B 41, 127 (1980).Google Scholar