Hostname: page-component-7bb8b95d7b-lvwk9 Total loading time: 0 Render date: 2024-10-04T00:05:51.191Z Has data issue: false hasContentIssue false

Defect diffusion in hcp Zirconium: A kinetic Monte Carlo approach

Published online by Cambridge University Press:  01 February 2011

C. Arévalo
Affiliation:
Instituto de Fusión Nuclear, Universidad Politécnica, Madrid, Spain
M.J. Caturla
Affiliation:
Universidad de Alicante, Dep. Fisica Aplicada, Alicante, Spain Lawrence Livermore National Laboratory, Livermore CA, USA
J.M. Perlado
Affiliation:
Instituto de Fusión Nuclear, Universidad Politécnica, Madrid, Spain
Get access

Abstract

We have studied diffusion of defects produced during irradiation in hcp zirconium through a kinetic Monte Carlo model. The input data for these simulations is based on molecular dynamics calculations and from experiments whenever available. The initial cascade damage produced by recoils of 25 keV energy from molecular dynamics simulations has been followed for times of hours at a fixed temperature of 600K. We have calculated the number of freely migrating defects, the recombination ratio between vacancies and interstitials, the defects surviving in the bulk as well as the average cluster size for these remaining defects.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Fleck, R.G., Holt, R.A., Perovic, V. and Tadros, J., J. Nucl. Mater. 159 (1988) 75 Google Scholar
2. Griffiths, M. and Müllejans, H., Micron 26 (1995) 555 Google Scholar
3. Caturla, M.J., Soneda, N., Alonso, E., Wirth, B.D., Diaz de la Rubia, T. and Perlado, J.M., J. Nucl. Mater. 276 (2000) 13 Google Scholar
4. Gao, F., Bacon, D.J., Howe, L.M. and So, C.B., J. Nucl. Mater. 276 (2001) 288 Google Scholar
5. Wooding, S.J. and Bacon, D.J., Phil. Mag. A, 76 (1997) 1033 Google Scholar
6. Wooding, S.J., Howe, L.M., Gao, F., Calder, A.F. and Bacon, D.J., J. Nucl. Mater. 254 (1998) 288 Google Scholar
7. Johnson, M.D., Caturla, M.J. and Diaz de la Rubia, T., J. Appl. Physics 84 (1998) 1963 Google Scholar
8. See references in Arevalo, C. and Perlado, J.M., “State of the art of diffusion parameters for Zr: Preparing kMC simulations”, SIRENA meeting report (March, 2003). Report Instituto de Fusión Nuclear (2003)Google Scholar
9. Osetsky, Y.N., Bacon, D.J. and de Diego, N., Metall. and Mater. Trans. A 33 (2002) 777 Google Scholar
10. de Diego, N., Osetsky, Y.N. and Bacon, D.J., Metall. and Mater. Trans. A 33 (2002) 783 Google Scholar
11. Whitting, B.J. and Bacon, D.J., Mat. Res. Soc. Symp. Proceeding 439 (1997) 389 Google Scholar
12. Ackland, G.J., Wooding, S.J. and Bacon, D.J., Phil. Mag. 71 (1995) 553 Google Scholar
13. Pasianot, R.C. and Monti, A.M., J. Nucl. Mater. 264 (1999) 198 Google Scholar
14. Pasianot, R.C., Monti, A.M., Simonelli, G. and Savino, E.J., J. Nucl. Mater. 276 (2000) 230 Google Scholar
15. Voskoboinikov, R. and Bacon, D.J, “MD simulation of displacement cascades in pure Zirconium”, SIRENA meeting report (March, 2003)Google Scholar
16. Soneda, N. and Diaz de la Rubia, T., Phil. Mag. 78 (1998) 995 Google Scholar