Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-27T00:59:29.301Z Has data issue: false hasContentIssue false

Defect Diffusion During Annealing of Low-Energy Ion-Implanted Silicon

Published online by Cambridge University Press:  15 February 2011

P. J. Bedrossian
Affiliation:
Lawrence Livermore National Laboratory, Livermore CA 94551
M -J. Caturla
Affiliation:
Lawrence Livermore National Laboratory, Livermore CA 94551
T. Diaz De La Rubia
Affiliation:
Lawrence Livermore National Laboratory, Livermore CA 94551
Get access

Abstract

We present a new approach for investigating the kinetics of defect migration during annealing of low-energy, ion-implanted silicon, employing a combination of computer simulations and atomic-resolution tunneling microscopy. Using atomically-clean Si(111)-7×7 as a sink for bulk point defects created by 5 keV Xe and Ar irradiation, we observe distinct, temperature-dependent surface arrival rates for vacancies and interstitials. A combination of simulation tools provides a detailed description of the processes that underdy the observed temperature-dependence of defect segregation, and the predictions of the simulations agree closely with the experimental observations.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Plummer, J.D., Griffin, P.G., Nucl. Instrum. Meth. B 102, 160 (95).Google Scholar
2. Gösele, U. and Tan, T.Y. Diffusion in Solids, Unsolved Problems (Trans Tech. Publications, Zurich, 1992), p. 189.Google Scholar
3. Gossmann, H.-J., Stolk, P.A., Eaglesham, D.J., Gilmer, G.H., and Poate, J.M., Process Physics and Modeling in Semiconductor Technology, editied by Srinivasan, G.R., Murthy, C. S., and Dunham, S.T. (Electrochemical Society, Pennington, New Jersery, 1996).Google Scholar
4. Gosele, U., Plöβl, A., and Physics, T.Y. Tan Process and Modeling in Semiconductor Technology, edited by Srinivasan, G.R., Murthy, C.S. and Dunham, S.T. (Electrochemical Society, Pennington, New Jersey, 1996), p. 309.Google Scholar
5. Gilmer, G.H., Diaz de la Rubia, T., Stock, D. and Jaraiz, M., Nucl. Instrum. and Methods B 102, 247 (1995).Google Scholar
6. Stillinger, F.H. and Weber, T.A., Phys. Rev. B 31, 5262 (1985).Google Scholar
7. Biersack, J.P. and Ziegler, J.F., Nucl. Instrum. and Methods. 194, 93 (1982).Google Scholar
8. Caturla, M. J., Marques, L., Diaz de la Rubia, T. and Gilmer, G.H., Phys. Rev. B (in press).Google Scholar
9. Narayan, J., Oen, O.S., Fathy, D. and Hollan, O.W., Materials Letters 3, 67 (1985).Google Scholar
10. Zalm, P.C., J.Appl. Phys. 54, 2660 (1983).Google Scholar
11. Jaraiz, M., Gilmer, G.H., Poate, J. M. and Diaz de la Rubia, T., Appl. Phys. Lett. 68, 409 (1996).Google Scholar
12. Pelaz, L. and Gilmer, G.H. (private communication).Google Scholar
13. Zhu, J., Diaz de la Rubia, T., Yang, L., Mailhiot, C. and Gilmer, G.H., Phys. Rev. B54, 4741 (1996).Google Scholar