Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-10-28T06:50:50.645Z Has data issue: false hasContentIssue false

Defect Control During Epitaxial Regrowth by Rapid Thermal Annealing

Published online by Cambridge University Press:  15 February 2011

H. Baumgart
Affiliation:
Bell Laboratories, Murray Hill, New Jersey 07974, USA
G. K. Celler
Affiliation:
Bell Laboratories, Murray Hill, New Jersey 07974, USA
D. J. Lischner
Affiliation:
Bell Laboratories, Murray Hill, New Jersey 07974, USA
McD. Robinson
Affiliation:
Bell Laboratories, Murray Hill, New Jersey 07974, USA
T. T. Sheng
Affiliation:
Bell Laboratories, Murray Hill, New Jersey 07974, USA
Get access

Abstract

Rapid Thermal Annealing (RTA) with tungsten halogen lamps provides excellent regrowth of silicon layers damaged by ion implantation. In addition to minimizing dopant redistribution, the inherent advantage of this technique is good control of temperature gradients. The latter is instrumental in reducing the density of extended defects in the annealed samples. In contrast, solid phase laser annealing, which involves steep temperature gradients, always leaves interstitial dislocation loops and point defect clusters. We present a comparative study of crystal quality following laser processing and incoherent light annealing as well as furnace annealing of As, P and B ion implanted Si wafers.

Type
Research Article
Copyright
Copyright © Materials Research Society 1983

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

Bell Laboratories, Allentown, Pennsylvania 18103

References

REFERENCES

1.Nishiyama, K., Arai, M. and Watanabe, N.. Jap. J. of Appl. Phys. 19(10)L 563 (1980).Google Scholar
2.Powell, R. A., Yep, T. O. and Fulks., R. T.Appl. Phys. Lett. 39, 150 (1981).Google Scholar
3.Gat., A.IEEE Electron Device Lett. EDL–2, 85 (1981).Google Scholar
4.Benton, J. L., Celler, G. K., Jacobson, D. C., Kimerling, L. C., Lischner, D. J., Miller, G. L. and Robinson, McD. in “Laser and Electron Beam Interactions with Solids”, Appleton, B. R. and Celler, G. K., eds. (North Holland, New York) p. 765 (1982).Google Scholar
5.Lischner, D. J. and Celler, G. K. in “Laser and Electron Beam Interactions with Solids”, Appleton, B. R. and Celler, G. K., eds. (North Holland, New York) p. 759 (1982).Google Scholar
6.Larson, B. C., White, C. W. and Appleton., B. R.Appl. Phys. Lett. 32 (12) 801 (1978).Google Scholar
7.Haond, M., Vu, D. P. and Ades., C.Electronic Letters, Vol. 18, No. 16, p. 694 (1982).Google Scholar
8.Baumgart, H., Hildebrand, O., Phillipp, F. and Rozgonyi, G. A.. Inst. of Physics (London) Conference Ser. No. 60: Section 2, p. 127 (1981).Google Scholar
9.Baumgart, H., Phillipp, F. and Leamy, H. J., in “Laser and Electron Beam Interactions with Solids”, Appleton, B. R. and Celler, G. K., eds. (North Holland, New York) p. 355 (1982).Google Scholar