Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-25T15:33:13.687Z Has data issue: false hasContentIssue false

Deep-Penetration Mechanism of Ion-Irradiation Defects in Al0.3Ga0.7As/GaAs Heterostructure Investigated by In Situ Hall Measurement

Published online by Cambridge University Press:  25 February 2011

Toshihiko Kanayama
Affiliation:
Electrotechnical Laboratory, 1–1–4 Umezono, Tsukuba-shi, Ibaraki 305, Japan.
Yukihiro Takeuchi
Affiliation:
Electrotechnical Laboratory, 1–1–4 Umezono, Tsukuba-shi, Ibaraki 305, Japan.
Yoshinobu Sugiyama
Affiliation:
Electrotechnical Laboratory, 1–1–4 Umezono, Tsukuba-shi, Ibaraki 305, Japan.
Get access

Abstract

Two-dimensional electron gas 60–120-nm deep from the surface was irradiated with 10-keV Ar ions (projected range = 8.8 nm) and resulting change in the mobility was analyzed. Defect distribution thus obtained is exponential in depth with the larger penetration length for the lower irradiation temperature. In-situ Hall measurements revealed that the mobility decreases simultaneously with the irradiation at 90 K. Consequently, the deep penetration of defects is concluded to be mainly due to the ion channeling. Results of iso-chronal annealing indicate that thermal diffusion of the defect that affects the mobility takes place at around 340–400 K, whereas the mobility starts to recover at ∼120 K.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Wong, H. F., Green, D. L., Liu, T. Y., Lishan, D. G., Bellis, M., Hu, E.L., Petroff, P.M., Holtz, P.O., and Merz, J.L., J. Vac. Sci. Technol. B6, 1906 (1988).Google Scholar
2. Miyake, H., Yuba, Y., Gamo, K., Namba, S., Mimura, R., and Aihara, R., Jpn. J. Appl Phys. 27, L2037(1988).Google Scholar
3. Yu, J., Masui, N., Yuba, Y., Hara, T., Hamagaki, M., Aoyagi, Y., Gamo, K., and Namba, S., Jpn. J. Appl Phys. 28, 2391 (1989).Google Scholar
4. Germann, R., Forchel, A., Bresch, M., and Meier, H. P., J. Vac. Sci. Technol. B7, 1475(1989).Google Scholar
5. Taneya, M., Sugimoto, Y., and Akita, K., J. Appl. Phys. 66, 1375 (1989).Google Scholar
6. Akita, K., Taneya, M., Sugimoto, Y., Hidaka, H., and Tajima, M., J. Vac. Sci. Technol. A8, 3274(1990).Google Scholar
7. Stoffel, N. G., J. Vac. Sci. Technol. B10, 651 (1992).Google Scholar
8. Stoffel, N. G., Schwarz, S. A., Pudensi, M. A. A., Kash, K., Florez, L. T., Harbison, J. P., and Wilkens, B. J., Appl Phys. Lett. 60, 1603 (1992).Google Scholar
9. Kanayama, T., Takeuchi, Y. and Sugiyama, Y., Appl Phys. Lett. 61, 1402 (1992).Google Scholar
10. Takeuchi, Y., Soga, H., Ueno, Y., Kanayama, T., Sugiyama, Y., and Tacano, M., Appl Phys. Lett. 61, 2084 (1992).Google Scholar
11. Lindhard, J., Scharff, M., and Schiott, H. E., Mat. Fys. Medd. Dan. Vid. Selsk. 33, No.14(1963).Google Scholar
12. Morkoc, H., in The Technology and Physics of Molecular Beam Epitaxy, edited by Parker, E.H.C. (Plenum, New York, 1985) p.192.Google Scholar
13. Drummond, T. J., Morkoc, H., Hess, K., and Cho, A. Y., J. Appl. Phys. 52, 5231 (1981).Google Scholar
14. Biersack, J. P. and Ziegler, J. F., TRIM-90 (1990).Google Scholar
15. Lang, D. V., Logan, R. A., and Jaros, M., Phys. Rev. B19, 1015 (1979).Google Scholar
16. Stormer, H. L., Gossard, A. C., Wiegmann, W., and Baldwin, K., Appl Phys. Lett. 39, 912 (1981).CrossRefGoogle Scholar
17. Drummond, T. J., Kopp, W., Fischer, R., Morkoc, H., Thorne, R. E., and Cho, A. Y., J. Appl. Phys. 53, 1238 (1982).Google Scholar
18. Klem, J., Masselink, W. T., Arnold, D., Fischer, R., Drummond, T. J., Morkoc, H., Lee, K., and Shur, M. S., J. Appl. Phys. 54, 5214 (1983).CrossRefGoogle Scholar
19. Kastalsky, A. and Hwang, J. C. M., Solid State Commun. 51, 317 (1984).Google Scholar
20. Stein, H. J., J. Appl. Phys. 40, 5300 (1969).CrossRefGoogle Scholar
21. Thommen, K., Radiat. Eff. 2, 201 (1970).Google Scholar