Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-25T17:47:25.329Z Has data issue: false hasContentIssue false

Deep-Level Traps in CCD Image Sensors

Published online by Cambridge University Press:  10 February 2011

William C. Mccolgin
Affiliation:
Microelectronics Technology Division, Eastman Kodak Company, Rochester, NY 14650-2008, [email protected]
James P. Lavine
Affiliation:
Microelectronics Technology Division, Eastman Kodak Company, Rochester, NY 14650-2008, [email protected]
Charles V. Stancampiano
Affiliation:
Microelectronics Technology Division, Eastman Kodak Company, Rochester, NY 14650-2008, [email protected]
Jeffrey B. Russell
Affiliation:
Microelectronics Technology Division, Eastman Kodak Company, Rochester, NY 14650-2008, [email protected]
Get access

Abstract

We have extended by five the number of deep-level traps known to create dark current in charge-coupled device (CCD) image sensors. These include Mn, Pt, and three much weaker traps that are as yet unidentified. Using dark current spectroscopy (DCS) we show that the generation rates at 55°C range from 6400 electrons/s for Mn to only 2 electrons/s for the weakest trap, which lies 0.27 eV off mid-gap. These weak traps determine the bandwidths and resolution of the trap peaks seen in the dark current spectra.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Grove, A.S., Physics and Technology of Semiconductor Devices, Wiley, New York, 1967, pp. 129133.Google Scholar
2. McGrath, R.D., Doty, J., Lupino, G., Ricker, G., Vallerga, J., IEEE Trans. Electron Devices ED–34, 2555 (1987).Google Scholar
3. McColgin, W.C., Lavine, J.P., Kyan, J., Nichols, D.N., and Stancampiano, C.V., Tech. Dig. of the IEDM, 113 (1992).Google Scholar
4. McColgin, W.C., Lavine, J.P., and Stancampiano, C.V. in Defect and Impurity Engineered Semiconductors and Devices, edited by Ashok, S., Chevallier, J., Akasaki, I., Johnson, N.M., and Sopori, B.L. (Mater. Res. Soc. Proc. 378, Pittsburgh, PA, 1995) pp. 713724.Google Scholar
5. McColgin, W.C., Lavine, J.P., and Stancampiano, C.V. in Defects in Electronic Materials II, edited by Michel, J., Kennedy, T., Wada, K., and Thonke, K. (Mater. Res. Soc. Proc. 442, Pittsburgh, PA, 1997) pp. 187192.Google Scholar
6. McColgin, W.C., Lavine, J.P., Kyan, J., Nichols, D.N., Russell, J.B., and Stancampiano, C.V. in Defect Engineering in Semiconductor Growth, Processing and Device Technology, edited by Ashok, S., Chevallier, J., Sumino, K., and Weber, E. (Mater. Res. Soc. Proc. 262, Pittsburgh, PA, 1992) pp. 769774.Google Scholar
7. Nichols, D.N., Stevens, E.G., Burkey, B.C., Stancampiano, C.V., Lee, T.-R., Lee, T.-H., Kosman, S.L., Losee, D.L., Lavine, J.P., Torok, G.R., and Khosla, R. P., Int. J. Imag. Sci. Tech. 5, 323 (1994).Google Scholar
8. Miller, W.A., Wong, K.Y., and Chang, W.C. in The Physics and Chemistry ofImaging Systems, IS&T 47th Annual Conference, (1994) pp. 649651.Google Scholar
9. van der Spiegel, J. and Declerck, G.J., Solid-State Electron. 27, 147 (1984).Google Scholar
10. Weber, E.R., Appl. Phys. A 30, 1 (1983).Google Scholar
11. Lemke, H., Phys. Status Solidi (A) 75, 173 (1983); 76, 223 (1983).Google Scholar
12. Woodbury, H.H. and Ludwig, G.W., Phys. Rev. 126, 466 (1962).Google Scholar
13. Toren, W. and Bisschop, J., Tech. Dig. of the IEDM, 163 (1995).Google Scholar
14. Graff, K., Metal Impurities in Silicon Device Fabrication (Springer Series in Mater. Sci. 24), Springer-Verlag, New York, 1995, pp. 118120.Google Scholar
15. Kwon, Y.K., Ishikawa, T., and Kuwano, H., J. Appl. Phys. 61, 1055 (1987).Google Scholar
16. Mishra, K. in The Role of Point Defects and Defect Complexes in Silicon Device Processing, edited by Sopori, B.L. (Third NREL Workshop, Golden, CO, 1993) p. 57.Google Scholar