Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-14T02:46:59.870Z Has data issue: false hasContentIssue false

Deep Reactive Ion Etching of Silicon

Published online by Cambridge University Press:  10 February 2011

A. A. Ayón
Affiliation:
Department of Electrical Engineering and Computer Science
K.-S Chen
Affiliation:
Department of Aeronautics and Astronautics Massachusetts Institute of Technology Cambridge, MA 02139
K. A. Lohner
Affiliation:
Department of Aeronautics and Astronautics Massachusetts Institute of Technology Cambridge, MA 02139
S. M. Spearing
Affiliation:
Department of Aeronautics and Astronautics Massachusetts Institute of Technology Cambridge, MA 02139
H. H. Sawin
Affiliation:
Department of Electrical Engineering and Computer Science
M. A. Schmidt
Affiliation:
Department of Electrical Engineering and Computer Science
Get access

Abstract

The ability to etch deep trenches in silicon while controlling not only the profile of etched features but also the etching rate, uniformity and selectivity enable us to expand the number and scope of MEMS devices. In fact, the increase of MEMS applications in different and varied fields requiring deep silicon etching or high aspect ratio structures (HARS) has even been extended to include microturbomachinery which was recently introduced as a feasible source of power generation. Many projects also place additional demands on surface morphology. Thus, the scalloping observed on vertical walls during time multiplexed deep etching (TMDE), the roughness of horizontal surfaces exposed to the glow discharge and the radius at the bottom of etched features are also relevant. Therefore, it is important to understand not only the plasma processes involved but also the dependence of response variables on operating conditions. For this purpose we have designed, performed and analyzed sets of experiments adequate to fit quadratic models. The data was collected using interferometry, atomic force microscopy (AFM), profilometry and scanning electron microscopy (SEM). The exercise involved eight etching variables and it was conducted in an inductively coupled deep reactive ion etcher (DRIE). The mapping of the dependence of response variables on dry processing conditions produced by this systematic approach provide additional insight in the plasma phenomena involved and supply practical tools to locate and optimize robust operating conditions.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Klaasen, E. H., Petersen, K., Noworolski, J. M., Logan, J., Maluf, N. I., Brown, J., Storment, C., McCulley, W. and Kovacs, G. T. A., in Proceedings of Transducers '95, p. 556, Stockholm (1995).Google Scholar
2 Epstein, A., Senturia, S. D., AI-Midani, O., Anathasuresh, G., Ayón, A. A., Breuer, K., Chen, K.-S., Ehrich, F. et al, Micro-Heat Engines, Gas Turbines and Rocket Engines: The MIT Microengine Project, 28th AIAA Fluid Dynamics Conference, 4th AIAA Shear Flow Control, Snowmass Village, CO, June 1997.Google Scholar
3 Epstein, A. H. and Sentunia, S. D., Science, Vol. 276, p. 1211 (1997).Google Scholar
4 Hesketh, P. J. and Harrison, J. D., Interface, Vol. 3, No. 4 (1994).Google Scholar
5 Mucha, J. A., Solid State Technology, March (1985).Google Scholar
6 d'Agostino, R. and Flamm, D. L., J Appl. Phys., 52, 162 (1981).Google Scholar
7 Tzeng, Y. and Lin, T. H., J Electrochem. Soc., Vol. 134, 430 (1987).Google Scholar
8 D'Emic, C. P., Chan, K. K. and Blum, J., J Vac. Sci. Technol., B10 1105 (1992).Google Scholar
9 Syau, T., Baliga, B. J. and Hamaker, R. W., J. Electrochem. Soc., 138, 3076 (1992).Google Scholar
10 Robert Bosch Gmbh, patents 4855017 and 4784720 (USA), and 4241045C1 (Germany), all issued in 1994.Google Scholar
11 Aachboun, S. and Ranson, P., 45th International Symposium of the American Vacuum Society, Baltimore, MD, November, 1998.Google Scholar
12 Roosmalen, A. J., Baggerman, J. A. G. and Brader, S. J. H., Dry Etching for VLSI, p. 113, Plenum Press (1991).Google Scholar
13 Eisele, K. M., J. Electro. Chem. Soc., Vol. 128, 430 (1981).Google Scholar
14 Flammm, D. L. Ibbotson, D. E., Mucha, J. A. and Donnelly, V. M., Solid State Technology, April (1983).Google Scholar
15 Singer, P., Semiconductor International, J uly (1996).Google Scholar
16 Epstein, A., Senturia, S. D., Anathasuresh, G., Ayon, A., Breuer, K., Chen, K-S, Ehrich, F. E., Gauba, G., Ghodssi, R., Groshenry, C., Jacobson, S., Lang, J. H., Lin, C-C, Mehra, A., Miranda, J. M., Nagle, S., Orr, D. J., Piekos, E., Schmidt, M. A., Shirley, G., Spearing, M. S., Tan, C. S. and Waltz, I. A., in Proceedings of Transducers '97, Chicago (1997).Google Scholar
17 Bayt, R., Ayon, A. A. and Breuer, K., 33rd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Seattle (1997).Google Scholar
18 Klaasen, E. H., Petersen, K., Noworolski, J. M, Logan, J., Maluf, N. I., Brown, J., Storment, C., McCulley, W. and Kovacs, G. T. A., in Proceedings of Transducers '95, p. 556, Stockholm (1995).Google Scholar
19 Man, P. F., Gogoi, B. P. and Mastrangelo, C. H., J. Microelectromech. Syst., Vol. 6, 430 (1997).Google Scholar
20 Whitesides, G. M., in Proceedings of Transducers '97, p. 23, Chicago (1997).Google Scholar
21 Surface Technology Systems USA Inc., Redwood, CA.Google Scholar
22 Tepermeister, I., Blayo, N., Klemens, F. P., Ibbotson, D. E., Gottscho, R. A., Lee, J. T. C. and Sawin, H. H., J Vac. Sci. Technol., B12, 2310 (1994).Google Scholar
23 Oehrlein, G. S. and Rembetski, R. F., IBM J. Res. Develop., Vol. 36, 430 (1992).Google Scholar
24 Allen, K. D., Sawin, H. H. and Yokozeki, A., J Electrochem. Soc., Vol. 133, 430 (1986).Google Scholar
25 Tandon, U. S. and Pant, B. D., Vacuum, Vol. 42, 430 (1991).Google Scholar
26 Gray, D. C., Tepermeister, I. and Sawin, H. H., J. Vac. Sci. Technol., B11, 1243 (1993).Google Scholar
27 Gray, D. C., Ph.D. Thesis, MIT, Cambridge (1992).Google Scholar
28 Mannos, D. and Flamm, D., Plasma Etching, p. 101, Academic Press (1989).Google Scholar
29 Oehrlein, G. S., Rembetski, J. F. and Payne, E. H., J. Vac. Sci. Technol., B8, 1199 (1990).Google Scholar
30 Pichot, M., Vacuum, 41, 895 (1990).Google Scholar
31 Singer, P. H., Semiconductor International, March (1988).Google Scholar