Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-27T01:30:04.208Z Has data issue: false hasContentIssue false

Deep Levels in 4H Silicon Carbide Epilayers Induced by Neutron-Irradiation up to 1016 n/cm2

Published online by Cambridge University Press:  01 February 2011

Anna Cavallini
Affiliation:
[email protected], University of Bologna, Physics, Viale Berti Pichat 6/2, Bologna, N/A, 40127, Italy, +390512095108, +390512095153
Antonio Castaldini
Affiliation:
[email protected], University of Bologna, Physics, Viale Berti Pichat 6/2, Bologna, N/A, 40127, Italy
Filippo Nava
Affiliation:
[email protected], University of Modena, Physics, Via Campi 183, Modena, N/A, 41100, Italy
Paolo Errani
Affiliation:
[email protected], University of Modena, Physics, Via Campi 183, Modena, N/A, 41100, Italy
Vladimir Cindro
Affiliation:
[email protected], Josef Stefan Institute, Neutron Irradiation Facility, Josef Stefan Institute Yadranska 39, Ljublljana, N/A, 1000, Slovenia
Get access

Abstract

We investigated the electronic levels of defects introduced in 4H-SiC α-particle detectors by irradiation with 1 MeV neutrons up to a fluence equal to 8x1015 n/cm2. As well, we investigated their effect on the detector radiation hardness. This study was carried out by deep level transient spectroscopy (DLTS) and photo-induced current transient spectroscopy (PICTS). As the irradiation level approaches fluences in the order of 1015 n/cm2, the material behaves as highly resistive due to a very great compensation effect but the diodes are still able to detect with a acceptably good charge collection efficiency (CCE) equal to 80%. By further increasing fluence, CCE decreases reaching the value of ≈ 20% at fluence of 8x1015 n/cm2.

The dominant peaks in the PICTS spectra occur in the temperature range [400, 700] K. Enthalpy, capture cross-section and order of magnitude of the density of such deep levels were calculated. In the above said temperature range the deep levels associated to the radiation induced defects play the key role in the degradation of the CCE. Two deep levels at Et = 1.18 eV and Et = 1.50 eV are likely to be responsible of such dramatic decrease of the charge collection efficiency. These levels were reasonably associated to an elementary defect involving a carbon vacancy and to a defect complex involving a carbon and a silicon vacancy, respectively.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Bruzzi, M., Michel, M., RD50 Status Report 2002/2003 CERN-LHCC-2003-058 and LHCC-RD-002.Google Scholar
2 Neudeck, P G., Okojie, R S., Chen, Liang-Yu, Proc. IEEE, 90, (6), (2002).Google Scholar
3 Spetz, A. Lloyd, Tobias, P., Baranzahi, A., Martensson, P., Lundstrom, I., IEEE Trans. Electr. Dev. 46, 561, (1999).Google Scholar
4 Dulloo, A.R., Ruddy, F.H., Seidel, J.G., Davison, C., Flinchbaugh, T., Daubenspeck, T.. IEEE Trans. Nucl. Sci. NS–46, 275, (1999).Google Scholar
5 Seshadri, S., Dulloo, A.R., Ruddy, F.H., Seidel, J.G., Rowland, L.B.. IEEE Trans. Electr. Dev. NS–46, 567, (1999)Google Scholar
6 Nava, F., Vittone, E., Vanni, P., Verzellesi, G., Fuochi, P.G., Lanzieri, C., Glaser, M.. Nucl. Instrum. Meth. A505, 645, (2003)Google Scholar
7 Nava, F., Vanni, P., Verzellesi, G., Castaldini, A., Cavallini, A.. Mater. Sci. Forum, 353–356, 757, (2001)Google Scholar
8 Kalinina, E., Kholuyanov, G., Onushkin, G., Davydov, D., Strel'chuk, A., Konstantinov, A., Hallén, A., Skuratov, V. and Kuznetsov, A.. Mater. Sci. Forum, 483–485, 377, (2005)Google Scholar
9 Castaldini, A., Cavallini, A., Rigutti, L. and Nava, F.. Mater.Sci.Forum 483–485, 359, (2005)Google Scholar
10 Strel'chuck, A.M., kalinina, E.V., Konstantinov, A.O., Hallen, A.. Mater. Sci. Forum, 483–485, 993, (2005)Google Scholar
11 Rogalla, M., Runge, K., Soldner, A.,-Rembold. Nucl. Phys. B78, 516, (1999)Google Scholar
12 Cunningham, W., Melone, J., Horn, M., Kazukauskas, V., Roy, P., Doherty, F., Glaser, M., Vaitkus, J., Rahman, M.,. Nucl. Instrum. Meth. A509, 127, (2003)Google Scholar
13 Grant, J., Cunningham, W., Blue, A., Vaitkus, J., Gaubas, E., Rahman, M.,. (6TH Int. Work on Rad. Imag. Detectors IWORID-2004, July 25-29, Glasgow/Scotland)Google Scholar
14 Lemeilleur, F., Linstrom, G., Watts, S.,. Moll, M., ROSE-RD48, (2002)Google Scholar
15 Lindstrom, G., Moll, M., Fretwurst, E., Nucl. Instrum. Meth. A466, 308, (2001)Google Scholar
16 Castaldini, A., Cavallini, A., Rigutti, L., Nava, F., Ferrero, S., Giorgis, F.. J. Appl. Phys, 98, (2005)Google Scholar
17 Alfieri, G., Monakhov, E.V., Linnarsson, M.K. and G, B.,. Svensson. Mater.Sci.Forum 483–485, 365, (2005)Google Scholar
18 Nava, F., Vanni, P., Bruzzi, M., Lagomarsino, S., Sciortino, S., Wagner, G., Lanzieri, C.. IEEE Trans. Nucl. Sci. NS–53, 238, (2004)Google Scholar
19 Sciortino, S., Hartjes, F., Lagomarsino, S., Nava, F., Brianzi, M., Cindro, V., Lanzieri, C., Noll, M., Vanni, P., Nucl. Instrum. Meth. A552, 138. (2005)Google Scholar
20 Nava, F., Wagner, G., Lanzieri, C., Vanni, P., Vittone, E.,. Nucl. Instrum. Meth. A510, 273, (2003)Google Scholar
21 Castaldini, A., Cavallini, A., Rigutti, L.,. Appl. Phys. Lett. 85, 3780, (2004)Google Scholar
22 Ravnick, M., Jeraj, R.,. Nucl. Sci. Eng. 145, 145, (2003)Google Scholar
23 Zontar, D., Cindro, V., Kramberger, G., Mikuz, M.,. Nucl. Instrum. Meth. A426, 51, (1999)Google Scholar
24 Manfredotti, C., Fizzotti, F., Lo, A., Giudice, , Paolini, C., Vittone, E., Nava, F.,. Appl. Surf. Science 184, 448. (2001)Google Scholar
25 Nava, F., Vittone, E., Vanni, P., Fuochi, P.G., Lanzieri, C.. Nucl. Instr. and Meth. in Phys. Res. A514, 126, (2003)Google Scholar
26 Tapiero, M., Benjelloun, N., Zielinger, J.P., El, S., Hamd, and Noguet, C.. J. Appl. Phys. 64, 8, 4006, (1988)Google Scholar
27 Eywarays, A.O., Smith, S.R., C, W., Mitchel. J. Appl. Phys. 79, 10, 7726, (1996)Google Scholar
28 Kimoto, T., Itoh, A., Matsunami, H., Sridhara, S., Clemen, L. L., Devaty, R. P., Choyke, W. J., Dalibor, T., Peppermüller, C.. Appl. Phys. Lett. 67, 2833, (1995)Google Scholar
29 Lebedev, A.A.,. Fiz. Tekh. Poluprovodn 33,129, (1998) [Semiconductors 33,2,107, (1999)]..Google Scholar
30 Storasta, L., Bergman, J.P., Janzèn, E., Henry, A. and Lu, J.,. J. Appl. Phys. 96, 9, 4909, (2004)Google Scholar
31 Hemmingsson, C.G., Son, N.T., Ellison, A., Zhang, J., and Janzèn., E. Phys. Rev. B 58, 16, R1, (1998)Google Scholar
32 Dalibor, T., Pensl, G., Matsunami, H., Kimoto, T., Choyke, W.J., Schoner, A., and Nordell, N.. Phys. Stat. Sol. (a) 162, 199, (1997)Google Scholar
33 Storasta, L., Carlsson, F.H., Sridhara, S.G., Aberg, D., Bergman, J.P., Hallèn, A. and Janzèn., E. Mat. Science Forum 353–356, 431, (2001)Google Scholar
34 Castaldini, A, Cavallini, A, Rigutti, L. Semicond.Sci.Technol. 21,724, (2006)Google Scholar
35 Martin, D. M., Nielsen, H. Kortegaard, Lévêque, P., Hallén, A., Alfieri, G. Svensson, B. G.. Appl. Phys. Lett. 84, 1704, (2004)Google Scholar
36 Son, N.T., Magnusson, B., Zolnai, Z., Ellison, A., Janzen, E.,. Mat. Science Forum 433–436, 45 (2003).Google Scholar
37 Muller, St.G. Brady, M.F., Brrixius, W.H., Glass, R.C., Hobgood, H. McD, Jenny, J.R., Leonard, R.T., Malta, D.P., Powell, A.R., Tsvetkov, V.F., Allen, S.T., Palmour, J.W., Carter, C.H. Jr, Mat. Science Forum 433–436, 39. (2003)Google Scholar
38 Negoro, Y., Kimoto, T., and Matsunami, H.,. Appl. Phys. Lett. 85, 10, 1716, (2004)Google Scholar
39 Martini, M., Mayer, J.W., Zanio, K., Applied Solid State Science. Edited by. Wolfe, (Academic Press, New York 1972), Vol.3.Google Scholar
40 Li, Z.., “Systematic modelling and comparisons of capacitance and current-based microscopicdefect analysis techniques for measurements of high-resistivity silicon detectors after irradiation”, Nucl. Instr. and Meth. A403, 399, (1998)Google Scholar