Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-19T12:25:05.992Z Has data issue: false hasContentIssue false

Decrease in Resistance of Ceria Oxygen Sensor Induced by 10 mol% Hf and Zr Doping

Published online by Cambridge University Press:  01 February 2011

Noriya Izu
Affiliation:
[email protected], National Institute of Advanced Industrial Science and Technology (AIST), Advanced Manufacturing Research Institute, 2266-98 Shimo-Shidami, Moriyama-ku, Nagoya, Aichi, 463-8560, Japan, +81-52-736-7108, +81-52-736-7244
Woosuck Shin
Affiliation:
Ichiro Matsubara
Affiliation:
Norimitsu Murayama
Affiliation:
Get access

Abstract

Resistive type sensors using 10 mol% Hf-doped ceria and 10 mol% Zr-doped ceria, which had a single cubic phase obtained by solid state reaction, were fabricated and their sensing properties were investigated. The resistance and resistivity of the 10 mol% Hf-doped ceria or 10 mol% Zr-doped ceria were smaller than those of non-doped ceria. In the case of the same temperature of solid state reaction, the resistance and resistivity of the 10 mol% Hf-doped ceria were much smaller than those of the 10 mol% Zr-doped ceria. Furthermore, in the case of the same dopant, the resistance and resistivity of the sensor prepared from the solid state reaction at 1773 K were much smaller than those at 1673 K. The sensor using the 10 mol% Hf-doped ceria could be used as an oxygen gas sensor in wide oxygen partial pressure range and could be applicable to a λ sensor and a universal A/F sensor.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1) Ivers-Tiffée, E., Härdtl, K.H., Menesklou, W., and Riegel, J., Electrochimica. Acta. 47, 807 (2001).Google Scholar
2) Moos, R., Rettig, F., Hürland, A., and Plog, C., Sen. Actuators B 93, 43 (2003).Google Scholar
3) Izu, N., Shin, W., Matsubara, I., and Murayama, N., Sen. Actuators B 94, 222 (2003).Google Scholar
4) Izu, N., Shin, W., Matsubara, I., and Murayama, N., Sen. Actuators B 101, 381 (2004).Google Scholar
5) Gerblinger, J., Lohwasser, W., Lampe, U., and Meixner, H., Sen. Actuators B 26–27, 93 (1995).Google Scholar
6) Beie, H.-J. and Gnörich, A., Sen. Actuators B 4, 393 (1991).Google Scholar
7) Jasinski, P., Suzuki, T., and Anderson, H. U., Sen. Actuators B 95, 73 (2003).Google Scholar
8) Várhegyi, E. B., Perczel, I. V., Gerblinger, J., Fleischer, M., Meixner, H., and Giber, J., Sen. Actuators B 18–19, 569 (1994).Google Scholar
9) Izu, N., Shin, W., Matsubara, I., and Murayama, N., J. Ceram. Soc. Jpn. 112, S535 (2004).Google Scholar
10) Izu, N., Oh-hori, N., Itou, M., Shin, W., Matsubara, I., and Murayama, N., Sen. Actuators B 108, 238 (2005).Google Scholar
11) Izu, N., Shin, W., Matsubara, I. and Murayama, N., Electrochemistry 73, 478 (2005).Google Scholar
12) Shannon, R. D. and Prewitt, C. T., Acta Cryst. B25, 925 (1969).Google Scholar
13) Fujimori, H., Yashima, M., Sasaki, S., Kakihana, M., Mori, T., Tanaka, M., Yoshimura, M., Physical Review B, 64 134104 (2001).Google Scholar
14) Tuller, H. L. and Nowick, A. S., J. Phys. Chem. Solids 38, 859 (1977).Google Scholar
15) Izu, N., Kishimoto, H., Omata, T., -Matsuo, S. O.-Y., J. Solid State Chem. 151, 253 (2000).Google Scholar