Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-25T17:25:55.980Z Has data issue: false hasContentIssue false

Decomposition of Unstable Supersaturated Cu90Co10 Solid Solutions

Published online by Cambridge University Press:  15 February 2011

Ralf Busch
Affiliation:
Institut für Metallphysik, Universität Göttingen, Hospitalstr. 3-7, D-37073 Göttingen, Germany
Frank Gärtner
Affiliation:
Institut für Metallphysik, Universität Göttingen, Hospitalstr. 3-7, D-37073 Göttingen, Germany
Christine Borchers
Affiliation:
Institut für Metallphysik, Universität Göttingen, Hospitalstr. 3-7, D-37073 Göttingen, Germany
Peter Haasen
Affiliation:
Institut für Metallphysik, Universität Göttingen, Hospitalstr. 3-7, D-37073 Göttingen, Germany
Rüdiger Bormann
Affiliation:
Institute for Materials Research, GKSS Research Center, D-21502 Geesthacht, Germany
Get access

Abstract

Homogeneous Cu90Co10 alloys were prepared by rapid solidification using the meltspin technique. The decomposition process of this highly supersaturated unstable solid solution was investigated on a nanometer scale using a combination of atom probe field ion microscopy (AP/FIM) analyses and transmission electron microscopy.

Annealing of the Cu90Co10 alloys at 440°C for various times leads to the formation of a compositional modulated microstructure within the grains. The composition profiles determined by AP/FIM analyses clearly exclude a classical nucleation and growth behavior of Co-rich particles. The microstructure is modulated with two different wavelengths. In addition, chemical ordering perpendicular to [111] directions of the fee lattice is observed.

At the grain boundaries of this alloy, heterogeneous nucleation of pure Co particles is observed. This heterogeneous nucleation process competes with the decomposition within the grains.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. LeGoues, F.K. and Aaronson, H.I., Acta Met. 32 , 1855 (1984).Google Scholar
2. Hattenhauer, R. and Haasen, P., Phil.Mag. A 68, 1195 (1993).Google Scholar
3. Wendt, H. and Haasen, P., Scripta met. 19 ,1053 (1985).Google Scholar
4. Al-Kassab, T., PhD thesis, Göttingen (1992).Google Scholar
5. Jiang, X., Wagner, W. and Wollenberger, H., Z.f. Metallkunde 82, 192 (1991).Google Scholar
6. Ebel, T., Kampmann, R. and Wagner, R., Physica B 180, 357 (1992).Google Scholar
7. Gente, C., Oehring, M., and Bormann, R., Phys.Rev. B 48, 13244 (1993).Google Scholar
8. Childress, J.R. and Chien, C.L., Phys.Rev. B 43, 8089 (1991).Google Scholar
9. Wecker, J., Helmholdt, R.v., Schultz, L., and Samwer, K., Appl.Phys.Lett. 62, 1985 (1993).Google Scholar
10. Busch, R.,Gärtner, F.,Borchers, C.,Haasen, P.,and Bormann, R., Acta.Metall.et Mat. 43, 3467 (1995).Google Scholar
11. Hattenhauer, R. and Haider, F., Scr. Met. Mat. 25, 1173 (1991).Google Scholar
12. Geber, G.P., Al-Kassab, T., Isheim, D., Busch, R., and Haasen, P., Z. Metallkde. 83, 449 (1992).Google Scholar
13. Busch, R., Gärtner, F., Borchers, C., Haasen, P., and Bormann, R., Acta.Metall. et al. in press (1995).Google Scholar
14. Khachaturyan, A.G., Theory of Structural Transformations in Solids (Wiley, New York, 1983).Google Scholar
15. Grüne, R., Hütten, A., and Alvensleben, L.v., Journal de Physique 47, C7295 (1986).Google Scholar