Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-23T13:36:26.994Z Has data issue: false hasContentIssue false

The Decomposition of tBAA on the Silicon Surface

Published online by Cambridge University Press:  21 March 2011

Ing-Jye Huang
Affiliation:
Department of Chemistry, National Taiwan University, 1 Roosevelt Rd., Sec. 4, Taipei, Taiwan 10617, R. O. C.
Get access

Abstract

Among the copper precursors used, cupric β-diketonate complexes exhibit a high sublimationrate and a low pyrolysis temperature. This work explored the possibility of using a nonfluorinated t-butylacetato complex of Cu(II) as the precursor. Secondary ion mass spectrometry and temperature-program desorption studies on the adsorption and decomposition of the ligand, tert-butyl acetoacetate (tBAA), of this precursor on Si(100) showed that at low doses, all tBAA molecules dissociated readily upon adsorption on the surface at substrate temperatures as low as –160°C. For dissociation through tBAA bonding via the ester oxygen to the surface, the bond scission occurring at the tBu-O bond resulted in the formation of surface tert-butylfragments, which in turn underwent a β-hydride elimination reaction to yield isobutene and surface hydride. In addition, the bond scission occurring at the tBuO-CO bond produced surface tert-butoxy specie, of which the hydrogen atom in the â position can be transferred to the oxygen atom of the butoxy group to yield isobutene and surface hydroxyl species. Its implication in the quality of the copper film generated is discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Pauleau, Y., Fasasi, A. Y., Chem. Mater. 3, 45 (1991).Google Scholar
2. , Temple, Reisman, A., J. Electrochem. Soc. 136, 3525 (1989).Google Scholar
3. Kaloyeros, A. E., Feng, A., Garhart, J., Brooks, K. C., Ghosh, S. K., Saxena, A. N., Luehers, F., J. Electronic Mater. 19, 271 (1990).Google Scholar
4. Lecohier, B., Calpini, B., Philippoz, J.-M., Bergh, H. van den, Laub, D., Buffet, P. A., J. Electrochem. Soc. 140, 789 (1993).Google Scholar
5. Jefferies, P. M., Girolami, G., Chem. Mater. 1, 8 (1989).Google Scholar
6. Fine, S. J., Norman, J. A. T., Muratore, B. A., Dyer, P. N., Abstracts of Papers, Fall Meeting of the Materials Research Society, 1990, E4.8.Google Scholar
7. Zahidi, E., Castonguay, M., McBreen, P. H., J. Phys. Chem. 99, 17906 (1995).Google Scholar
8. Schwaner, A. L., Fieberg, J. E., White, J. M., J. Phys. Chem. B101, 11112 (1997).Google Scholar
9. Zahidi, E., Castonguay, M., McBreen, P. H., J. Am. Chem. Soc. 116, 5847 (1994).Google Scholar
10.a) Garrison, B. J., J. Am. Chem. Soc. 102, 6553 (1980); b) C.-C. Chang, J.-Y. Hsieh, Phys. Rev. B57, 57 (1998).Google Scholar
11. Walczak, M. M., Leavitt, P. K., Thiel, P. A., J. Am. Chem. Soc. 109, 5621 (1987).Google Scholar
12. Stenhagen, E., Abrahamsson, S., McLafferty, F. W., “Atlas of Mass Spectral Data”, eds., Interscience Publishers, New York.Google Scholar
13. Rueter, M. A., Vohs, J. M., Surf. Sci. 262, 42 (1992).Google Scholar
14. Darlington, B., Foster, M., Campion, A., Surf. Sci. 304, L407 (1994).Google Scholar
15. Bent, B. E., Nuzzo, R. G., Dubois, L. H., J. Vac. Sci. Technol. A6, 1920 (1988).Google Scholar
16. Bent, B. E., Nuzzo, R. G., Dubois, L. H., J. Am. Chem. Soc. 111, 1634 (1989).Google Scholar
17. Keeling, L. A., Chen, L., Greenlief, C. M., Bonser, D., Chem. Phys. Lett. 217, 136 (1994).Google Scholar
18. Du, W., Keeling, L. A., Greenlief, C. M., J. Vac. Sci. Technol. A12, 2281 (1994).Google Scholar
19. Jeffries, P. M., Dubois, L. H., Girolami, G. S., Chem. Mater. 4, 1169 (1992).Google Scholar
20. Ibach, H., Bruchmann, H. D., Wagner, H., Appl. Phys. A29, 113 (1982).Google Scholar