Published online by Cambridge University Press: 15 March 2011
Being able to obtain and analyze quantitative data are an essential components of any undergraduate education in science or engineering. At the most basic level, this begins with characterizing the measurement system using proper statistical techniques. Although most undergraduates in the sciences and engineering are required to take a course in statistics, the knowledge gained in the statistics course does not always find its way into practice. In this paper we will present 4 experimental modules that will enable the student to: 1. Assess the precision of a measurement system; 2. Determine if the system is stable with respect to a number of variables; 3. Quantify the amount of variation that exists within a particular sample; 4. Quantify the amount of variation from sample to sample (i.e., process variation). Our modules were applied to the measurement of silicon dioxide thickness from an oxidation process. However, they generally apply to any process that involves measuring a physical quantity. Assessing these sources of variation in a process form the foundation for more advanced techniques such as process control and experimental design.