Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-25T17:35:35.337Z Has data issue: false hasContentIssue false

Dc Characteristics (I-V) of Pseudomorphic GaAs/InGaAs/AlGaAs Quantum-Wire FETs

Published online by Cambridge University Press:  21 February 2011

J. Blanchet
Affiliation:
SPEC, Centre d’Etudes de Saclay, 91191 Gif-sur-Yvette Cedex, France
P. Debray
Affiliation:
SPEC, Centre d’Etudes de Saclay, 91191 Gif-sur-Yvette Cedex, France Centre National de la Recherche Scientifique (CNRS)
S. Bollaert
Affiliation:
Département Hyperfréquences et Semiconducteurs, IEMN, Université des Sciences Techniques de Lille, 59655 Villeneuve d’Ascq, France
A. Cappy
Affiliation:
Département Hyperfréquences et Semiconducteurs, IEMN, Université des Sciences Techniques de Lille, 59655 Villeneuve d’Ascq, France
Get access

Abstract

We have measured the static I-V characteristics of pseudomorphic conventional HEMTs and FETs based on parallel array of quantum wires (UNIFETs) at ambient, 77, and 1.5K, respectively. These measurements show that at ambient temperature the saturation-regime extrinsic transconductance (gm) of the UNIFETs is about 80% higher than that of the conventional HEMTs. The gm of both types of devices increases as the temperature is lowered. The rate of increase is higher for the UNIFETs due to the one-dimensional character of electron transport. FETs based on array of parallel quantum wires are well-suited for high-frequency applications because of their high transconductance resulting from size quantization and lateral confinement of the carriers.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Sakaki, H., Jpn. J. Appl. Phys. 19, L735 (1980).Google Scholar
2 Sakaki, H., Surf. Sci. 267, 623 (1992).Google Scholar
3 Jovanovic, D. and Leburton, J.P., IEEE Electron Device Lett. 14, 17 (1993).Google Scholar
4 Vanbremeersch, J., Constant, E., Zimmermann, J., Valin, I., Godts, P., and Leroy, A., Electron Lett. 26, 152 (1990).Google Scholar
5 Bollaert, S., Legry, P., Delos, E., and Cappy, A., Preprint.Google Scholar
6 DasSarma, S. and Xie, X.C., Phys. Rev. B35, 9875 (1987); M.J. Kearney and P.N. Butcher, J. Phys. C: Solid State Phys. 20, 47 (1987).Google Scholar