Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-16T17:02:41.923Z Has data issue: false hasContentIssue false

Damage Introduction in Ingap and Aigaas by Electron Cyclotron Resonance ar Plasmas

Published online by Cambridge University Press:  10 February 2011

J. W. Lee
Affiliation:
University of Florida, Gainesville FL 32611
S. J. Pearton
Affiliation:
University of Florida, Gainesville FL 32611
R. R. Stradtmann
Affiliation:
University of Florida, Gainesville FL 32611
C. R. Abernathy
Affiliation:
University of Florida, Gainesville FL 32611
W. S. Hobson
Affiliation:
Lucent Technologies Bell Laboratories, Murray Hill NJ 07974
F. Ren
Affiliation:
Lucent Technologies Bell Laboratories, Murray Hill NJ 07974
Get access

Abstract

Changes in sheet resistance of n- and p-type InGaP exposed to Electron Cyclotron Resonance Ar plasmas have been used to measure the introduction of ion-induced damage. P-type material is much more resistant to change in its conductivity than n-type InGaP, indicating that electron traps are the predominant entity produced by the ion bombardment. For short (˜1 min.) plasma exposures the ion current is more important than ion energy in producing resistance changes. Annealing of damage in both conductivity types occurs with an activation energy of ˜3.4±0.5eV. p+A1GaAs is found to be much more susceptible than n+AlGaAs to the introduction of electrically active deep levels during exposure to Electron Cyclotron Resonance Ar plasmas. In both AlGaAs materials the resistivity of thin (˜0.5μm) epitaxial layers increases rapidly with both plasma exposure time and the ion energy, while the ion density in the Ar discharge has a much greater influence on p+AlGaAs than n-type material. These results suggest that the energetic ion bombardment introduces deep hole traps more readily than deep electron traps in AlGaAs and that pnp transistor structures will be more susceptible to plasma damage than comparable npn structures.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. sec for example, Kuo, J. M., Thin Solid Films 231 158 (11993).Google Scholar
2. Hobson, W. S., Proc. Mater. Res. Soc. Symp. 300 75 (1993).Google Scholar
3. Lothian, J. R., Kuo, J. M., Ren, F. and Pearton, S. J., J. Electron Mater. 21 441 (1992).Google Scholar
4. Ren, F., Pro. Mater. Res. Soc. Symp. 300 21 (1993); F. Ren, J. R. Lothian, S. J. Pearton, C. R. Abernathy, P. W. Wisk, T. R. Fullowan, B. Tseng, S. N. G. Chu, Y. K. Chen, C. Yang, S. T. Fu, R. Brozovich, H. H. Lin, C. L. Henning and T. Henry, J. Vac. Sci. Technol. B 12 2916 (1994).Google Scholar
5. Merriff, S. A. and Dagenais, M., J. Electrochen. Soc. 140 138 (1993).Google Scholar
6. Abernathy, C. R., Mat. Sci. Eng. Rep. 14 203 (1995).Google Scholar
7. Pang, S. W., J. Electrochem. Soc 133 784 (1986).Google Scholar
8. Seaward, K. L. and Moll, N. J., J. Vac. Sci. Technol. B 10 46 (1992).Google Scholar
9. Pearton, S. J., Corbett, J. W. and Stavola, M., Hydrogen in Crystalline Semiconductors (Springer-Verlag, Heidelberg, 1992).Google Scholar
10. Pearton, S. J., Charkrabarti, U. K and Hobson, W. S., J. Appl. Phys. 66 2061 (1989).Google Scholar
11. Pearton, S. J., Mat. Sci. Rep. 4 313 (1990).Google Scholar
12. Lee, J. W., Pearton, S. J., Abernathy, C. R., Hobson, W. S. and Ren, F., Appl. Phys. Lett. 67 3129 (1995).Google Scholar
13. Ren, F., Pearton, S. J., Abernathy, C. R., Wu, C. S., Hu, M., Pao, C. K, Wang, D. C. and Wen, C. P., IEEE Trans Electron. Dev. ED-39 2701 (1992).Google Scholar
14. Ren, F.. Abernathy, C. R., Pearton, S. J., Lothian, J. R., Wisk, P., Fullowan, T., Chen, Y. K., Yang, L. W., Fu, S., Brozovich, R. and Lin, H. H., IEEE Electron Dev. Lett. 14 332 (1993).Google Scholar