Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-25T15:15:18.154Z Has data issue: false hasContentIssue false

Damage Induced By A Low-Biased 92-MHz Anode-Coupled Reactive Ion Etcher Using Chlorine-Nitrogen Mixed Plasmas

Published online by Cambridge University Press:  15 February 2011

Tadashi Saitoh
Affiliation:
NIT Basic Research Laboratories 3–1 Morinosato-Wakamiya, Atsugi, Kanagawa 243–01, Japan, [email protected]
Hideki Gotoh
Affiliation:
NIT Basic Research Laboratories 3–1 Morinosato-Wakamiya, Atsugi, Kanagawa 243–01, Japan, [email protected]
Tetsuomi Sogawa
Affiliation:
NIT Basic Research Laboratories 3–1 Morinosato-Wakamiya, Atsugi, Kanagawa 243–01, Japan, [email protected]
Hiroshi Kanbe
Affiliation:
NIT Basic Research Laboratories 3–1 Morinosato-Wakamiya, Atsugi, Kanagawa 243–01, Japan, [email protected]
Get access

Abstract

Dry-etch damage, introduced by a low biased 92-MHz anode-coupled reactive ion etching (RIE), in MBE-grown undoped GaAs has been characterized by photoreflectance (PR) and photoluminescence (PL) measurements. PL spectra show emission peaks at 1.516 eV (excitons) and at 1.494 eV (D-A, B-A) before etching, whereas a new emission peak at around 1.488–1.490 eV appears after the RIE. The depth distribution of this new emission center, examined by PL measurements with a combination of step wet etching, has a Gaussian-shape with a l/e value of 56 nm. A very small number of nonradiative recombination centers are considered to be generated, because the integrated PL intensity including both emission peaks at 1.490 eV and at 1.516 eV is the same before and after the RIE. The surface recombination rate of the sidewall formed by the RIE is almost the same as that of the wet-etched surface. This low-damage etching has been applied to fabricate ultra-fine GaAs patterns to provide a nanometer-scale ridge structure with a cross-section 15-nm wide by 150-nm high. The low damage etching condition is also suitable for precise fabrication.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Kuske, J., Stephan, U., Schde, K., andFuhs, W., Mat. Res. Soc. Sump. Proc., 258, 141 (1992).Google Scholar
[2] Goto, H. H., Sasaki, M., Ohmi, T., Yamagami, A., Okamura, N., and Kamiya, O., IEEE Trans. Semicon. Manufac., 4, 111 (1991).Google Scholar
[3] Nakanishi, H. and Wada, K., The 57th Fall Meeting of Jpn. Soc. Appl. Phys., 7p-ZK-14 (1996) (Japanese).Google Scholar
[4] Nakanishi, H. and Wada, K., The 55th Spring Meeting of Jpn. Soc. Appl. Phys., 30p-ZD-2 (1994) (Japanese).; Mat. Res. Soc. Sump. Proc., 324, 161 (1994).Google Scholar
[5] Williams, E. W. and Bebb, H. B., Semiconductors and Semimetals, vol.8, edited by Willardson, R. K. and Beer, A. C. (Academic Press, New York, 1972), Chap. 5.Google Scholar
[6] Lauruelle, F., Bagchi, A., Tsuchiya, M., Merz, J., and Petroff, P. M., Appl. Phys. Lett., 56, 1561 (1990).Google Scholar
[7] Kanayama, T., Takeuchi, Y., andSugiyama, Y., Inst. Phys. Conf. Ser., No. 129, 573 (1992).Google Scholar
[8] Stoffel, N. G., Schwarz, S. A., Pudensi, M. A. A., Kash, K., Florez, L. T., Habison, J. P., and Wilkens, B. J., Appl. Phys. Lett., 60, 1603 (1992).Google Scholar
[9] Rahman, M., Foad, M. A., Hicks, S., Holland, M. C., and Wilkinson, C. D. W., Mat. Res. Soc. Sump. Proc., 279, 775 (1993).Google Scholar
[10] Green, D. L., Hu, E. L., and Stofell, N. G., J. Vac. Sci. Technol. B, 12, 3311 (1994).Google Scholar
[11] Chen, C. H., Green, D. L., Hu, E. L., Ibbetson, J. P., and Petroff, P. M., Appl. Phys. Lett., 69, 58 (1996).Google Scholar
[12] Maile, B. E., Forchel, A., Germann, R., and Grutzmacher, D., Appl. Phys. Lett., 54, 1552 (1989).Google Scholar
[13] Saitoh, T. and Kanbe, H., Jpn. J. Appl. Phys., Pt. 2, 35, L60 (1996).Google Scholar