Published online by Cambridge University Press: 25 February 2011
This paper will give a rapid overview of the main experimental results concerning the effects of high electronic energy deposition in metallic targets and present a tentative model based on the Coulomb explosion mechanism. More detailed reviews have been made recently concerning both the experiments [1–3] and the theoretical model [4].
High levels of localized energy deposition in electronic excitation are easily obtained using GeV heavy ions which during their slowing-down typically transfer a few keV/Å to the electronic system of the target and a few eV/Å in elastic collisions with target nuclei. In insulators and organic materials, it is well-known that both slowing-down processes contribute to damage creation, whereas in metals it has been claimed for a long time that the sole nuclear collisions are involved in damage processes. Although this last assertion remains true for some metals such as Cu, Ag, W, Cu3Au …[2], high levels of electronic excitation can induce a partial annealing of the defects resulting from nuclear collisions in Fe, Ni, Nb, Pt…. lead to additional defect creation in Fe, Co, Zr, Ti… [2] or even to phase transformations in NiZr2 [5], Ni3B[6], NiTi [7], Ti [8]… In the following, we shall only focuss on the last two effects.